Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания механических свойств и склонности к хрупкому разрушению

ИСПЫТАНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ И СКЛОННОСТИ к ХРУПКОМУ РАЗРУШЕНИЮ  [c.83]

Характеристики механических свойств, полученные испытанием при комнатной температуре, не отражают полностью эксплуатационных свойств металла. Важным показателем в этом отношении является склонность к хрупкому разрушению, характеризующая температуру, при которой металл переходит из вязкого в хрупкое сос-  [c.9]

Испытание на изгиб — один из основных и широко распространенных видов испытания материалов [2] — рекомендуется для определения механических СВОЙСТВ хрупких и малопластичных при растяжении металлов (чугунов, инструментальных сталей, литых сталей и сплавов), чувствительных к перекосу и требующих специальных мер его предотвращения при испытании на растяжение. Этот метод применяется для оценки склонности к хрупкому разруше- ию высокопрочных сталей (метод приборного изгиба ), а также при определении вязкости разрушения и чувствительности к острым трещинам. Им широко пользуются в практике коррозионных испытаний и при приемочном контроле материалов как технологической пробой для оценки пластичности и штампуемости материала, качества сварки и т. п.  [c.37]


Так, например, для чугуна, литых алюминиевых сплавов или литых подшипниковых сплавов (типа свинцовистой бронзы или баббита) растяжение является весьма жестким способом нагружения и для выявления механических свойств таких материалов в пластической области испытания на сжатие являются значительно более подходящими. В то же время сопротивление отрыву (склонность к хрупкому разрушению) этих материалов, как уже указывалось, удобнее оценивать при статическом изгибе, чем при растяжении.  [c.37]

Рассмотренные конструктивно-технологические и сравнительные методы испытаний дают качественные оценки сопротивления сталей слоистому растрескиванию. При эксплуатации сварных конструкций в условиях пониженных температур этих оценок оказывается недостаточно в связи с тем, что описанные методы дают наиболее полную информацию о СР при положительных температурах испытаний и реализации слоисто-вязких разрушений. При пониженных температурах уровни характеристик механических свойств в Z-нaпpaвлeнии (ч/2> КСУг) оказываются в полосе разброса результатов, полученных при обычных испытаниях, и не позволяют идентифицировать склонности сталей к СР при реализации слоисто-хрупких разрушений. Таким образом, требования к стали по величине /2 (см. табл. 4.4) являются необходимыми, но недостаточными для оценки склонности сталей к СР. В данной ситуации особое значение приобретают методы испытаний, позволяющие определять характеристики трещиностойкости сталей при разрушениях образцов по механизму СР.  [c.102]

Обеспечение прочности и надежности металлических конструкций при их эксплуатации требует знания механических свойств металлов и сплавов. Более углубленные современные представления о природе разрушения потребовали разработки новых прочностных, деформацион-нь1х и энергетических характеристик, отражающих свойства материала в локальном объеме у вершины трещины. BjHa Toniuee время известно. более 50 методов й вариантов испытаний для оценки склонности материала к хрупкому разрушению.  [c.5]

Существует значительное разнообразие методов оценки склонности материала к хрупкому разрушению, среди которых наиболее широко распространен метод ударной вязкости, позволяющий не только устанавливать количественные значения вязкости материала при ударном нагружении, но и определять температурный шорог хладноломкости (критическую температуру хрупкости). Кроме того, ударная вязкость оказалась весьма ценной технологической пробой, так как различные дефекты структуры значительно сильнее сказываются на величине а , чем на других механических свойствах, определяемых при статических испытаниях.  [c.49]


Изложенные выше соображения по поводу склонности материалов к хрупкому разрушению не позволяют предсказать характер разрушения материала, в котором уже образовалась трещина. Возможно, это связано с тем, что у большинства материалов при увеличении скорости деформирования резко повышается предел текучести. Микротрещины в материале могут образоваться в зонах локализации деформации. Таким образом, зная лишь характеристики макропластичности (кривые деформирования) при растяжении гладких образцов, нельзя достоверно оценивать в общем случае склонность материала к хрупкому разрушению. Примером разрушения детали из стали, имеющей отношение 0 0,2/сГв < 0,87, явилось хрупкое разрушение корпуса насоса, работающего в условиях сложного напряженного состояния, для которого в месте образования трещины значение А = (Гг/о = 0,4. Корпус был изготовлен из литой стали 20Х13Л, имевшей грубую структуру и следующие механические свойства <Го.2 = 293 МПа сг = 451 МПа б = 10% ф = 9,8% (рис. 2.7, б). Разрушение корпуса было вызвано аварийным превышением давления. Из металла разрушенного корпуса были изготовлены образцы типа Менаже для испытания на ударный изгиб с радиусом в надрезе 1 мм. Значение уд ной вязкости (удельной работы разрушения) оказалось равным 70-100 кДж/м .  [c.85]


Смотреть страницы где упоминается термин Испытания механических свойств и склонности к хрупкому разрушению : [c.372]    [c.412]    [c.323]   
Смотреть главы в:

Металловедение и технология металлов  -> Испытания механических свойств и склонности к хрупкому разрушению



ПОИСК



Испытание без разрушения

Механические испытания

Механическое разрушение

Разрушение свойства

Разрушение хрупкое



© 2025 Mash-xxl.info Реклама на сайте