Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические характеристики электроизоляционных материалов

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ  [c.9]

ХАРАКТЕРИСТИКИ ЭЛЕКТРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ И ИЗДЕЛИИ ОТНОСИТЕЛЬНО ВНЕШНИХ ЭЛЕКТРИЧЕСКИХ ВОЗДЕЙСТВИЙ  [c.122]

Характеристика изоляционных материалов. Удельное электрическое сопротивление материала характеризуется качеством электроизоляционного материала. Для диэлектриков, применяемых в установках высокого напряжения и конденсаторах, важны также электрическая прочность, диэлектрическая проницаемость и угол диэлектрических потерь. Кроме электрических свойств электроизоляционных материалов, большое значение имеет механическая прочность, нагревостойкость, гигроскопичность и др.  [c.332]


В книге рассматриваются основные способы определения электрических, физико-химических и механических характеристик электроизоляционных материалов. Освещаются методы неразрушающих испытаний — рентгена- и гамма-лучевые, спектроскопические, ультразвуковые и т. д. Излагаются сведения о применяемых образцах и их подготовке к испытаниям. Описываются наиболее распространенные измерительные приборы и установки.  [c.2]

Электрические свойства электроизоляционных материалов оценивают с помощью величин, называемых электрическими характеристиками (параметрами).  [c.5]

Электрические свойства электроизоляционных материалов оценивают с помощью величин, называемых электрическими характеристиками . К ним относятся удельное объемное сопротивление  [c.6]

Внутреннее сопротивление. Нередко электроизоляционные материалы не являются изотропными. Электрическое сопротивление материалов в направлении, параллельном поверхности образца (а у слоистых материалов в направлении вдоль слоев), меньше, чем в перпендикулярном направлении. Характеристикой таких материалов может служить внутреннее сопротивление / , , определяемое между двумя стандартными цилиндрическими электродами (см. рис. 1-6). Электроды плотно вставляются в образец на определенном расстоянии друг от друга. В некоторых случаях, помимо внутреннего сопротивления вводят понятие внутреннего удельного сопротивления р,-, рассчитываемого согласно формуле  [c.19]

Электроизоляционные материалы и изделия, применяемые в электрической аппаратуре, могут приходить в соприкосновение с дуговым, искровым или коронным разрядом и должны противостоять их воздействию более или менее длительное время. Примерами могут служить дугогасительные камеры электрической аппаратуры, перегородки между соседними разрывными контактами многополюсных выключателей и т. п. Для электроизоляционных элементов используются обычно композиционные материалы органического и неорганического происхождения. Под воздействием дуги происходят частичное разрушение материала с поверхности и изменение его характеристик, при этом могут наблюдаться увеличение поверхностной электрической проводимости, уменьшение массы, частичное прогорание материала в месте воздействия дуги и другие процессы.  [c.122]

Электрические характеристики принято определять двояким путем. Первый способ состоит в снятии требуемых характеристик в ходе нагревания образцов в термостате или при охлаждении их в криостате. Второй способ заключается в определении характеристик материалов в нормальных условиях до и после пребывания образцов в термостате или криостате. Тем самым устанавливается влияние на материалы высоких или низких температур. Порядок испытания и измеряемые величины должны быть указаны в стандарте или в технических условиях на материал. Для электроизоляционных материалов и для конструкций изоляции электрооборудования установлены общие методы определения нагревостойкости,  [c.138]


Электроизоляционные материалы классифицируются и по ряду внутривидовых признаков, которые определяются их основными характеристиками электрическими, механическими, физико-химическими, тепловыми.  [c.160]

Горячим прессованием слюдинитовых бумаг и картонов, пропитанных связующими, изготовляют коллекторный, формовочный и гибкий слюдиниты. При соединении с подложками получают гибкие электроизоляционные слюдинитовые материалы слюдинитовые ленты, гибкие стеклослюдиниты и т. п. В сравнении со Слюдяными материалами слюдинитовая изоляция обладает большей равномерностью по толщине, большей однородностью, повышенными электрическими характеристиками. Недостатки слюдинитовой изоляции — несколько пониженные механическая прочность и влагостойкость.  [c.212]

Определение дугостойкости электроизоляционных материалов. Под дугостойкостью понимают способность диэлектрика выдерживать воздействие электрической дуги без недопустимого ухудшения его свойств. Различают стойкость электроизоляционных материалов к действию электрической дуги при высоком свыше 1000 В) переменном напряжении и малых токах и при воздействии дуги, создаваемой постоянным напряжением до 1000 В. Характеристикой дугостойкости при испытаниях переменным напряжением служит время воздействия дуги до наступления пробоя. При испытаниях действием дуги постоянного напряжения материалы разделяются на классы в зависимости от реакции на воздействие дуги. Существующие методы испытаний позволяют лишь сравнивать дугостойкость различных материалов они не дают возможности распространить результаты испытаний, проводимых в условиях чистых и сухих лабораторий, на рабочие условия применения материалов, где влияние окружающей среды, грязи, влаги может существенно изменить дугостойкость материала. Выбор того или иного метода испытаний зависит от особенностей испытуемого материала, его назначения и устанавливается стандартом или техническими условиями на материал или изделие.  [c.397]

Электрические характеристики (удельное объемное и удельное поверхностное сопротивления при постоянном напряжении, а также диэлектрическая проницаемость, угол диэлектрических потерь и электрическая прочность при переменном напряжении частоты 50 гц) твердых электроизоляционных материалов измеряются в соответствии с ГОСТ 6433-52.  [c.17]

Нагревостойкость. Как уже упоминалось выше, основные характеристики качества электроизоляционных материалов при повышении температуры в большинстве случаев ухудшаются (сопротивление изоляции, пробивная напряженность, механическая прочность падают угол диэлектрических потерь, деформации при воздействии механических нагрузок растут). Поэтому очень важен вопрос о способности электрической изоляции выдерживать повышенную температуру без существенного уменьшения эксплуатационной надежности, иными словами, вопрос о наивысшей допустимой рабочей температуре изоляции.  [c.19]

Величину диэлектрических потерь в электроизоляционном материале можно характеризовать величиной рассеиваемой мощности, отнесенной к единице объема, или удельными потерями чаще для характеристики способности диэлектрика рассеивать энергию в электрическом поле пользуются углом диэлектрических потерь, а также тангенсом этого угла.  [c.57]

Помимо электрических характеристик большое значение для оценки качества электроизоляционных материалов и возможности использования их для тех или иных конкретных целей имеют различные общие физические, механические, тепловые и другие характеристики.  [c.205]

Тропикостойкость электроизоляционных материалов проверяют в основном двумя путями по изменению электрических характеристик после увлажнения и испытанию на рост плесени.  [c.282]

Слюды принадлежат к силикатам с характерной кристаллической структурой (см. 16-2). Эта структура создает такие особенности некоторых слюд, которые обусловили их применение в электроизоляционной технике исключительно высокие электрические характеристики перпендикулярно плоскости весьма совершенной спайности (001), способность легко расщепляться на весьма тонкие и потому гибкие пластинки, высокую прочность при растяжении в сечениях, перпендикулярных (001). Одновременно слюды обладают высокой нагревостойкостью. Благодаря этому комплексу свойств слюд в мировой практике, несмотря на интенсивные и успешные работы по созданию заменителей, слюдяная электроизоляция сохраняет весьма важное значение. Ряд новых материалов (материалы на основе слюдяных бумаг, синтетическая слюда) не заменяет слюдяные материалы, а обновляет их номенклатуру,технологию производства и применения (см. разд. 17),  [c.169]


Все слоистые электроизоляционные пластмассы представляют собой монолитные, механически прочные материалы с хорошим уровнем электрических характеристик (табл. 2).  [c.52]

Морозостойкость — способность электроизоляционных материалов противостоять низким температурам. Морозостойкость материалов оценивается по изменению их механических или физико-химических характеристик, так как электрические характеристики диэлектриков в основном не ухудшаются.  [c.15]

Из рассмотренных слоистых электроизоляционных материалов наибольшей нагревостойкостью, лучшими электрическими характеристиками, повышенной влагостойкостью и стойкостью к грибковой плес ни обладают стеклотекстолиты на кремнийорганических и эпоксидных связующих СТК-41, СТК-41/ЭП и др.  [c.86]

Основные электрические характеристики слоистых электроизоляционных материалов  [c.97]

Для оценки качества электроизоляционных материалов необходимо установить, при помощи каких числовых показателей можно определять их свойства. Весьма важны электрические свойства электроизоляционных материалов, которые, в первую очередь, и определяют саму возможность их использования. Сюда относятся различ-Г1ые виды удельного сопротивления, диэлектрическая проницаемость, угол диэлектрических потерь и электрическая прочность, которые мы кратко рассмотрим в 1 книги. Однако большое значение имеют и другие, кроме электрических, характеристики электроизоляционных материалов механическая прочность, нагревостойкость, гигроскопичность и т.д., которые мы рассмотрим в 2-4.  [c.9]

В книге излагаются современные методы определения основных электрических и неэлектрических характеристик электроизоляционных материалов и изделий. Приводятся сведения об образцах матгрналов, изделий и их подготовке к испытаниям. Описываются наиболее ]5аспространенные измерительные приборы и установки.  [c.2]

Под влиянием колебаний температуры в достаточно широких пределах характеристики электроизоляционных материалов и изделий претерпевают существенные изменения, ставящие под сомнение возможность использования материа.пов. Практически важные пока.затели электрической изоляции с повышением температуры в большинстве случаев ухудшаются. Поэтому исключительргос значение приобретает способность материала выдерживать повышен-ную температуру без существенного уменьшения эксплуатационной надежности иными словами, исключительно важен вопрос о наивысшей допустимой рабочей температуре изоляции. К тепловым характеристикам относятся удельная теплопроводность, температуры размягчения и воспламенения материалов, пагревостойкость, стойкость к термоударам, холодостойкость.  [c.164]

Под влиянием колебаний температуры в достаточно широких пределах характеристики электроизоляционных материалов и конструкций претерпевают существенные изменения, определяющие самую возможность использования этих материалов. Практически важные качественные показатели электрической изоляции при повышении температуры в большинстве случаев ухудшаются. Поэтому исключительное значение приобретает вопрос о способности электрической изоляции в том или ином конкретном выполнении выдерживать повышенную температуру без существенного уменьшения эксплуатационной надежности, иными словами, вопрос о наивысшей допустимой рабочей температуре цзоляции.  [c.264]

Электрические свойства электроизоляционных материалов оценивают с помощью величин, называемых электрическими характеристиками. К ним относятся удельйое объемное сопротивление, удельное поверхностное сопротивление, диэлектрическая проницаемость, тангенс угла диэлектрических потерь и электрическая прочность материала.  [c.6]

Электрические свойства электроизоляционных материалов настолько разнородны, что их невозможно определить какой-либо одной характеристикой. Важнейшие электрические свойства диэлеетриков определяются следующими числовыми показателями  [c.12]

В л а г о с т о й к о с ть, х и м с т о й к о с т ь, морозостойкость и тропикостой кость — стабильность электрических и физико-химических характеристик электроизоляционных материалов при воздействии соответственно влаги, кислот или щелочей низкой температуры в пределах от —45° до —60° С, а также тропического климата, характеризуемого высокой и резко изменя-  [c.10]

При испытании электроизоляционных материалов на атмосферостой-кость образцы пoдвepгaюf в заданных условиях (температура, влажность, состав газа, давление) воздействию определенных доз солнечной радиации, а при ускоренных испытаниях — воздействию ультрафиолетовой радиации. После этого фиксируют изменение электрических и механических характеристик материалов. Помимо обнаружения необратимых изменений свойств материалов (эти изменения остаются после прекращения воздействия излучения), в ряде случаев представляет интерес определение электрических свойств материала непосредственно во время облучения, что значительно более сложно и требует специально приспособленной аппаратуры. Кроме того, надо иметь в виду, что большое влияние на изменения в материале может оказывать среда, в которой находятся образцы во время облучения (воздух, нейтральный газ, вакуум и т. п.).  [c.195]

По электрическим свойствам мусковит является одним из лучших электроизоляционных материалов и превосходит в этом отношении флогопит. Кроме того, он более прочен механически, более тверд, гибок и упруг, чем флогопит. При нагревании слюды до некоторой температуры из нее начинает выделяться входящая в ее состав вода. При этом в результате вспучивания слюда теряет прозрачность, толщина ее увеличивается, механические свойства и электрические характеристики ухудшаются. Для различных слюд температура обезвоживания колеблется в весьма широких пределах у мусковитов она обычно не менее 200 °С, у флогопитов — не менее 800 °С. Некоторые разновидности флогопита имеют более низкие температуры обезвоживания (150—250 °С), что связано с повышенным содержанием воды. Такие слюды находят применение трдько для малоответственных целей.  [c.232]


В результате исследований многих авторов [1, 7, 8, 12, 13, 16—23, 33, 34, 36] установлено, что электрооборудование, работающее в условиях влажного теплого климата, может быть серьезно повреждено совместным действием влаги и плесневых грибов. Это влияние проявляется различным образом. Прежде всего плесневые грибы действуют на органические электроизоляционные материалы (текстиль, кожу, дерево, пластические массы) и ухудшают их механические свойства и электрическую характеристику, например уменыпают сопротивление изоляции. Мицелий плесневых грибов может проникать внутрь материала и расти в полостях при неправильно выполненной системе изоляции, снижая внутреннее электрическое сопротивление материала и его пробивную прочность. Это ухудшение электрической характеристики происходит не только под влиянием большого содержания воды в мицелии, но и под воздействием продуктов обмена, выделяемых плесневыми грибами во время их роста. Продукты жизнедеятельности микроорганизмов могут вызывать коррозию металлических частей. У некоторых приборов, например у зеркального гальванометра, нити мицелия могут нарушить механическое функционирование прибора. На рис. 23—25 показано биологическое повреждение некоторых электротехнических материалов и изделий. Из обзорных работ о влиянии плесневых грибов на электротехнические материалы и электрооборудование следует особенно рекомендовать следуюш,ие [2, 4, 9, 11, 27, 30, 31, 36].  [c.171]

Гетлнаксы. Слоистые прессованные электроизоляционные материалы из нескольких слоев бумаги, пропитанной фенольно-формальдегидными и другими смолами или их модификациями. Гетинакс выпускается нескольких марок различного назначения и параметров, зависящих от температуры окружающей среды, ее свойств и характеристик электрического тока. Из гетпнаксов изготовляют электроизоляционные детали, панели, крышки, втз лки, детали внутренней обшивки тепловозов, электровозов и тамбуров пассажирских вагонов, в том числе с учетом их работы в тропических условиях.  [c.263]

Все изоляционные материалы, в том числе изоляция обмоточных проводов и пропиточные лаки, должны длительно сохранять исходные физические и электрические характеристики в процессе эксплуатации. Поскольку тепловое старение является основным фактором, определяющим срок службы изоляции, классификация изоляционных материалов основана на их термостойкости. В связи с тем, что повышение нагрево-стойкости электроизоляционных материалов обеспечивает большую эксплуатационную надежность электротехнических изделий, вся история развития электроизоляционных материалов связана со стремлением использовать последние достижения в области синтеза термостойких полимеров. Необходимо отметить, что многие термостойкие полимеры (полиорганосилоксаны, полиимиды, полиамидоимиды и др.) впервые стали применяться именно в электротехнической промыщлен-ности.  [c.5]

Влагопроницаемость. Кроме гигроскопичности, большое практическое значение имеет влагопроницаемость электроизоляционных материалов, т. е. способность их пропускать через себя пары воды. Эта характеристика чрезвычайно важна для оценки качества материалов для защитных покровов шланги кабелей, опрессовка конденсаторов, ком-паундные заливки, лаковые покрытия изоляции электрических машин и т. п.  [c.29]

Полиорганосилоксаны. Органические диэлектрики (гл. 3—6) весьма широко применяются в электроизоляционной технике многие из них имеют хорошие электрические характеристики, удобны в технологическом отношении. Однако общим недостатком органических электроизоляционных материалов (кроме политетрафторэтилена) является их низкая нагревостойкость многие из органических материалов горючи и обладают низкой стойкостью к различным химическим реагентам. Неорганические электроизоляционные материалы, которые рассматриваются в гл. 7 и 8, не имеют в своем составе углерода (наличие которого, как известно, определяет принадлежность вещества к классу органических соединений) зато большинство неорганических диэлектриков содержит в своем составе элемент кремний 51. Неорганические диэлектрики обладают, вообще говоря, весьма высокой нагревостойкостью, однако они тверды и хрупки они более пригодны для изготовления механически прочных, недеформируемых деталей, чем для получения гибкой, эластичной изоляции.  [c.77]

Целлюлозные бумаги и картоны имеют в электропромышленности весьма многостроннее применение и относятся к числу старейших электроизоляционных материалов. Свое значение они сохранили до сих пор, несмотря на широкое развитие и применение многих новых синтетических материалов. Это объясняется низкой стоимостью и хорошими технологическими свойствами целлюлозных бумаг и картонов, которые наряду с высокими стабильностью и механической прочностью при достаточной гибкости дают возможность получать изоляцию с высокими электрическими характеристиками. Присущие им недостатки, как-то высокая гигроскопичность, низкая нагревостойкость, плохая теплопроводность — сильно ограничивают область их применения в качестве материалов электрической изоляции. В большинстве случаев бумаги и картоны применяют в пропитанном состоянии.  [c.5]

Выполнение учащимися лабораторных работ по электроматериаловедению помогает им закрепить теоретические знания и приобрести навыки по измерению электрических характеристик (ри, tg6, е, пр и др.), согласно которым оценивается надежность электроизоляционных материалов и определяются области их применения.  [c.3]

Диэлектрическая проницаемость и тангенс угла диэлектри- ческих потерь — важнейшие характеристики электроизоляцион- ых материалов. Диэлектрической проницаемостью (или относительной диэлектрической проницаемостью) г называется отношение абсолютной диэлектрической проницаемости вещества еа к электрической постоянной ео.  [c.12]

Эти приборы основаны на том, что, как правило, значения е -и у электроизоляционных материалов при повышении влажности возрастают (ср. принцип действия гигромистора, стр. 247) для определенных типов материалов (дерево, бумага, текстиль и т. п.) удается получить определенную однозначную зависимость е или у от влажности и, таким образом, по результатам измерения электроизоляционных характеристик оказывается возможным получать непосредственно значение влажности более того, иногда возможно градуировать измерительный прибор непосредственно в значениях влажности (в процентах). Описываемые при--боры различаются по характеру непосредственно измеряемого параметра (е или же у) по избранной электрической схеме и по устройству электродов, наиболее удобных для подсоединения к испытуемому материалу например, для измерения влажности -дерева, можно использовать два фиксированных на определенном -расстоянии друг от друга игольчатых электрода, вкалываемых на определенную глубину в дерево.  [c.254]

Механическая прочность асбестовых волокон не велика предел прочности при растяжении составляет 300— 400 кПсм . Вследствие этого при производстве асбестовых бумаг, лент и тканей, обычно добавляется определенное количество органических волокон, что приводит к снижению механической прочности при высокой температуре за счет выгорания органической части. Тем не менее асбестовые материалы по нагревостойкости относятся к классу С. Электроизоляционная асбестовая бумага выпускается сейчас толщиной 0,2 0,3 0,4 0,5 0,8 и 1,0 мм с минимальным пробивным напряжением в отдельных точках от 0,9 до 2,4 кв в зависимости от толщины. Может изготовляться и более тонкая бумага с повышенными электрическими характеристиками, по сравнению со стандартной, за счет лучшей очистки волокна, без введения органических волокон.  [c.128]

Нагревосгойхость — характеристика, определяюш,ая способность диэлектрика длительно выдерживать предельно допустимую температуру без заметного снижения механических, электрических и других характеристик. Установлены семь классов нагревостойкости электроизоляционных материалов (табл. 1).  [c.19]


Полиорганосилоксаны представляют собой полимерные кремнийорганические материалы с большой нагревостойкостью. Они объединяют очень большую группу диэлектриков, в которую входят электроизоляционные жидкости, каучуки и резины, смолы, лаки и компаун-ды . Характерными особенностями кремнийорггнических диэлектриков являются широкий интервал рабочих температ> р (от—60 до+200°С), влаго- и тропикостойкость, высокий уровень электрических характеристик.  [c.45]

Способы измерения электрических характеристик диэлектриков подробно изложены в книге Б. М. Тареева и Д. М. Казарновского Испытания электроизоляционных материалов . Госэнергоиздат, 1958, а также в ГОСТ 6433—52.  [c.6]

Минеральными электроизоляционными материалами являются горные породы (мрамор, шифер, талькохлорит и базальт), а также материалы, получаемые из портландцемента и асбеста (асбестоцемент и асбопласт). Эта группа неорганических диэлектриков отличается высокой стойкостью к электрическим дугам и хорошими механическими характеристиками. Минеральные диэлектрики, кроме базальта, поддаются всем видам механической обработки, за исключением штампования и нарезания резьбы.  [c.134]


Смотреть страницы где упоминается термин Электрические характеристики электроизоляционных материалов : [c.197]    [c.646]    [c.52]   
Смотреть главы в:

Электротехнические материалы Издание 6  -> Электрические характеристики электроизоляционных материалов

Справочник молодого электрика по электротехническим материалам и изделиям Издание  -> Электрические характеристики электроизоляционных материалов



ПОИСК



Материалы — Характеристики

Характеристика электроизоляционных материалов

Характеристики электроизоляционных материалов и изделий относительно внешних электрических воздействий Казарновский, Л. И. Любимов)

Электроизоляционные Характеристики

Электроизоляционные материалы



© 2025 Mash-xxl.info Реклама на сайте