Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод однородных решений в контактных задачах для тел неканонической формы

Глава 5 посвяш,ена развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Показывается, что использование однородных решений на кривых, отличных от координатных, требует привлечения сушественно более сложных численных методов, в частности, алгоритмов Ремеза нахождения наилучшего приближения. Исследованы в декартовых координатах контактные задачи для конечного тела в форме криволинейной трапеции (задачи N, N2, Щ) и в цилиндрических координатах для конечного тела вращения с криволинейной образующей (задача N4).  [c.18]


Параграф 5.1 посвящен развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Дается общая постановка задач, приводится описание схемы метода. Показывается, что метод однородных решений может быть с успехом применен к широкому классу существенно смешанных задач для тел, часть границы которых совпадает с парой координатных поверхностей канонической системы координат, на которой задаются смешанные граничные условия, а другая часть границы задается достаточно произвольно, и на ней ставятся несмешанные граничные условия. Дается сравнительная характеристика эффективности и границ применимости различных численных методов для удовлетворения краевым условиям при помощи однородных решений, отмечаются трудности, возникающие при использовании методов коллокации и наименьших квадратов, показываются преимущества использования методов Ремеза первого и второго рода.  [c.18]

Метод однородных решений в контактных задачах для тел неканонической формы  [c.183]

Цветков А.Н. Метод однородных решений в контактных задачах для неканонической формы. Автореферат дисс. канд. физ.-мат. наук. Ростов-на-Дону. 1991. — 22 с.  [c.281]

Цветков А. Н. Метод однородных решений в контактных задачах для тел неканонической формы. Дисс....канд. физ.-мат. наук. Ростов-на-Дону, 1991. 118 с.  [c.145]

Имеется достаточно большое количество публикаций, посвященных разработке этого метода применительно к решению задач с однородными граничными условиями, моделирующими процесс возбуждения и распространения колебаний в многосвязных областях типа изолированного слоя или полупространства с полостью произвольной формы, в том числе и выходящей на свободную границу. Значительно меньшее количество публикаций посвящено решению аналогичных задач для многослойных сред. Однако, работ, посвященных использованию этого перспективного метода применительно к решению динамических контактных задач для многослойного полупространства с произвольно расположенной полостью неканонической формы, в доступных литературных источниках найти не удалось.  [c.318]

Разработан на основе использования однородных решений и метода Ремеза нахождения наилучшего приближения и применен к исследованию ряда плоских и осесимметричных задач эффективный по-луаналитический метод решения контактных задач для тел конечных размеров неканонической формы. Изучено влияние формы боковой границы на распределение контактных напряжений.  [c.264]



Смотреть главы в:

Аналитические методы в контактных задачах теории упругости  -> Метод однородных решений в контактных задачах для тел неканонической формы



ПОИСК



Задача и метод

Задачи и методы их решения

Контактная задача

МЕТОДЫ РЕШЕНИЯ КОНТАКТНЫХ ЗАДАЧ

Метод контактный

Неканонические методы

Однородность тел

Решения метод

Решения однородные

Форма контактная



© 2025 Mash-xxl.info Реклама на сайте