Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства материалов при напряжениях, не превышающих предела упругости

Описанный опыт не доставляет нам никаких сведений об упругих свойствах материала. Желая найти предел упругости, после каждой нагрузки разгружают образец и следят за появлением остаточной деформации. Более точные приборы, конечно, позволят обнаружить остаточную деформацию раньше, поэтому предел упругости определяют как напряжение, начиная с которого остаточное удлинение превышает некоторую условную величину (от до 5-10 по разным нормам).  [c.129]


Напряжения в пружинах при заневоливании должны превышать предел упругости, что неизбежно связано с возникновением пластических деформаций на поверхности проволоки или ленты, из которой изготовлена пружина. В то же время сердцевина витков деформируется упруго и при разгрузке пружины стремится освободиться от напряжений и вернуться в исходное состояние. Однако это не может быть осуществлено полностью, так как практически деформированные поверхностные слои витков тормозят и препятствуют разрядке упругих напряжений средних слоев. Возникшие таким образом при заневоливании пружины остаточные напряжения позволяют повысить ее рабочую нагрузку в эксплуатации. Одновременно с этим при заневоливании выявляются и отсеиваются явно недоброкачественные пружины, которые вследствие недостаточных упругих свойств материала получили чрезмерную остаточную деформацию (осадку).  [c.518]

Предел упругости —такое напряжение, при котором величина относительной остаточной деформации не превышает 0,005%, т. е. предел упругости соответствует такому наибольшему напряжению, до которого материал сохраняет свои упругие свойства. Для многих материалов разница между пределом пропорциональности и пределом упругости невелика, и на практике между ними обычно различия не делают.  [c.134]

Несоответствие результатов вычисления по формуле (4) опытным данным свидетельствует о несовершенстве этой формулы, расхождение же результатов опытов может быть объяснено широкими допусками на механические свойства меди. Так, предел упругости твердой меди может изменяться от 280 до 350 МПа, а вариация предела упругости изделий еще более значительна. Недостаток формулы (4) заключается в том, что в ней не учтены условия нагружения н явления упрочнения материала. Для точечного контакта условия нагружения материала приближаются к условиям всестороннего сжатия, а напряжения упругих деформаций могут значительно превышать не только предел упругости, но даже и величину предела прочности. Примером могут служить шарикоподшипники, у которых допускается напряжение  [c.272]

Упругие свойства. На рис. 3.30 представлены типовые диаграммы деформирования фрикционной пластмассы при одноосном растяжении и сжатии. Кривая растяжения при нормальной температуре близка по виду к диаграмме разрушения хрупкого материала. Напряжения пропорциональны деформации до нагрузки, составляющей 80—90 % разрушающей нагрузки. Шейки на образцах не образуется. Разрывные удлинения, как правило, не превышают 1—2 %. При сжатии заметно влияние пластических деформаций — относительная разрушающая деформация достигает 10 % и более. Различие модулей упругости при растяжении и сжатии является следствием сложной структуры материала. Для жестких фрикционных пластмасс модуль упругости при изгибе составляет 60—90 % модуля упругости при растяжении. Коэффициент Пуассона для таких пластмасс изменяется в пределах 0,32—0,42.  [c.253]


Для данных условий испытаний, среднего напряжения, среды, частоты циклов нагружения определяет свойства материала и является величиной постоянной. Из выражения (147) следует, что если размер трещины чрезвычайно мал и стремится к нулю, то допускаемый размф напряжения чрезвычайно велик и стремится к бесконечности. Однако предельный случай, когда размер трещины приближается к нулю, соответствует пределу выносливости для гладких образцов. Известно, например, что предел выносливости для гладких образцов при изгибе с вращением приблизительно равен 0,5 ffg, где Стц - временное сопротивление разрыву. Кроме того, при других условиях нагружения и в присутствии коррозионных сред можно получить более низкие значения предела выносливости. Итак, должен существовать некоторый размер трещины, при котором выражение (147) и лежащие на его основе допущения механики разрушения становятся несправедливы. Кроме того, тот же самый вывод можно получить в результате анализа рассмотрения допущений, основанных на механике сплошных сред. В соответствии с этими допущениями размер трещины всегда должен превышать размфы элементов микроструктуры материала (например, размер зерен). Таким образом, в материале должна существовать характерная длина трещины, при которой условия подобия, необходимые для обоснованного применения линейно-упругой механики разрушения (ЛУМР), нарушаются.  [c.171]


Смотреть страницы где упоминается термин Свойства материалов при напряжениях, не превышающих предела упругости : [c.121]    [c.25]   
Смотреть главы в:

История науки о сопротивлении материалов  -> Свойства материалов при напряжениях, не превышающих предела упругости



ПОИСК



173 — Материалы 179 — Напряжения

Материалы упругие

НАПРЯЖЕНИЯ ЗА ПРЕДЕЛ УПРУГОСТ

Напряжение Свойства

Напряжения за пределами упругости

Напряжения упругие

Предел упругости

Свойства материалов

Свойство упругости

Упругие свойства

Упругие свойства напряжение

Упругость напряжение

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте