Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые обобщения решения Галина

Некоторые обобщения решения Галина  [c.17]

А. Н. Динник (1909) и Н. М. Беляев (1924) провели вычисление напряжений в телах, соприкасающихся по круговой или эллиптической площадке (см. также М. С. Кролевец, 1966). Значительное количество важных работ по контактным задачам было выполнено в тридцатых и сороковых годах. В. А. Абрамов (1939 и А. И. Лурье (1940) дали решение контактных задач о нецентрально нагруженном круглом и эллиптическом штампе. Существенные результаты в этом направлении получены И. Я. Штаерманом (1939, 1941, 1943), рассмотревшим различные случаи контакта тел вращения без предположения о малости поверхности их соприкосновения, а также впервые исследовавшим задачу о плотном прилегании штампа. В 1941 г. А. И. Лурье с помощью функций Ламе детально рассмотрел некоторые контактные задачи, причем разработал естественный и единообразный подход к задаче Герца и задаче о плотном прилегании. В работах М. Я. Леонова (1939, 1940) и Л. А. Галина (1946, 1947) дано дальнейшее обобщение ряда контактных задач для полупространства. Большой материал оригинального и обзорного характера, относящийся к рассматриваемым проблемам, содержится в монографиях И. Я. Штаермана (1949), Л. А. Галина (1953), А. И. Лурье (1955), а также в обзорных статьях Д. И. Шермана (1950) и Г. С. Шапиро (1950), в которых имеются ссылки на многие работы, не вошедшие в настоящий обзор.  [c.34]


Решение ряда задач о плоской деформашш было получено применением методов теории функций комплексного переменного и краевой задачи Римана-Гильберта (Л.А. Галин, Г.П. Черепанов). Некоторые упругопластические задачи сводятся к краевым задачам для функций комплексного переменного с аналитическими коэффициентами для решения этих задач был разработан метод функционалышх уравнений, основанный на обобщенном принципе аналитического продолжения (Г.П. Черепанов).  [c.7]

Названные, а также многие другие авторы за последние десятилетия дали исчерпывающие решения ряда новых смешанных задач пространственной теории упругости, в том числе и контактных. Так, Л. А. Галин (1947) и В. Л. Рвачев (1959) рассмотрели вопрос о вдавливании в полупространство клиновидного штампа в работах Н. А. Кильчевского (1958, 1960) даны обобщения задачи Герца и указана связь задачи об упругом контакте с некоторой экстремальной проблемой В. Л. Рвачев (1956, 1957) решил задачи о штампе в виде полосы и многоугольника, а также рассмотрел случай штампа с основанием, ограниченным кривой второго порядка работы Г. Я. Попова (1961, 1963) посвящены смешанным задачам для круговой области контакта и для штампа в виде полуплоскости и квадранта Н. М. Бородачев (1962, 1964, 1966) и А. Ф. Хрусталев (1965) исследовали ряд термоупругих задач для полупространства. Особо следует остановиться на сложной задаче о действии на полупространство полога кругового цилиндра, известной в литературе под названием задачи о кольцевом штампе. Точное решение этой задачи связано с нетабулированными функциями кольца овального сечения (см. Н. Н. Лебедев, 1937). Различные приближенные методы решения этой задачи предложены в работах  [c.35]

Затем Н. А. Ростовцев [89] дал решение интегрального уравнения (2.40), когда правая часть — многочлен. При этом решение оказалось имеющим вид произведения некоторого другого многочлена (формулы для определения коэффициентов которого указываются) на выражение (1—Это по существу обобщение известного аналогичного результата для обычного полупространства, полученного А. И. Лурье и Л. А. Галиным [17,]. Для получения этого результата  [c.299]


Смотреть главы в:

Неодномерные упругопластические задачи  -> Некоторые обобщения решения Галина



ПОИСК



Галин

Галинов

Некоторые обобщения

Обобщения

Решение Галина



© 2025 Mash-xxl.info Реклама на сайте