Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорости, энергия и условие неразрывности при турбулентном течении

Уравнения переноса массы и тепла при ламинарном и турбулентном течениях однофазных или двухфазных теплоносителей в каналах выводятся из основных законов физики сохранения массы, сохранения энергии, вязкого трения Ньютона, теплопроводности Фурье. Здесь и далее не будут затрагиваться вопросы переноса в жидкостях, законы трения в которых не подчиняются закону Ньютона (т = (Г ди ду). Уравнения неразрывности, движения и переноса тепла с учетом зависимости свойств от параметров теплоносителя образуют систему, представляющую основу для расчета полей скорости и температуры. Эта система является замкнутой для ламинарного режима течения. Для турбулентных режимов течения приходится прибегать к гипотезам или построению полуэмпирических моделей, позволяющих замкнуть систему уравнений. Для течений двухфазного потока, особенно в условиях кипения или конденсации, эмпирический подход до настоящего времени преобладает.  [c.9]


СКОРОСТИ, ЭНЕРГИЯ И УСЛОВИЕ НЕРАЗРЫВНОСТИ ПРИ ТУРБУЛЕНТНОМ ТЕЧЕНИИ  [c.229]

Заметим теперь, что в условиях развитой турбулентности вязкие напряжения трения пренебрежимо малы по сравнению с турбулентными напряжениями Рейнольдса (за исключением премы-кающего к твердым стенкам вязкого подслоя, который мы здесь не будем рассматривать). Поэтому естественно считать, что и перенос турбулентной энергии за счет сил вязкости (т. е. неупорядоченных молекулярных движений) очень мал по сравнению с переносом энергии турбулентными пульсациями скорости, т. е. что последнее слагаемое в скобках в левой части (7.41) пренебрежимо мало по сравнению со вторым слагаемым. Рассмотрим случай, когда осредненное течение однородно по направлению осей Ох и 0x2. В таком случае все статистические характеристики турбулентности будут зависеть только от хз, причем в силу уравнения неразрывности здесь дйз/дхз = 0, т. е. мз = 0. Будем наряду с обозначениями Х1 и щ для координат и скоростей использовать  [c.354]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]


Смотреть главы в:

Механика жидкости  -> Скорости, энергия и условие неразрывности при турбулентном течении



ПОИСК



Скорость течения

Скорость турбулентном

Скорость турбулентности

Течение турбулентное

У неразрывности

Условие неразрывности

Энергия скоростей

Энергия турбулентная



© 2025 Mash-xxl.info Реклама на сайте