Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод контроля по оптическому поглощению

МЕТОД КОНТРОЛЯ ПО ОПТИЧЕСКОМУ ПОГЛОЩЕНИЮ  [c.178]

Оптические методы контроля весьма разнообразны и отличаются друг от друга по физическому явлению, лежащему в их основе. Так, метод, основанный на анализе оптического поглощения света, проходящего через вещество, широко используется в лазерных микроскопах. Если к исследуемому образцу, через который проходит поляризованное лазерное излучение, прикладывать магнитное или электрическое поле и тем самым поворачивать плоскость поляризации вещества, то можно получить дополнительную информацию о качестве исследуемого объекта.  [c.177]


Среди фундаментальных характеристик вещества, таких как химический состав, плотность, электропроводность, вязкость, одно из основных мест принадлежит оптическим постоянным — показателю преломления п и показателю поглощения х. Эти величины, описывающие взаимодействие электромагнитного поля со средой, чутко реагируют на изменение ее состава или структуры. Поэтому оптические методы измерения я и х, сочетающие высокую точность, быстродействие, возможность неразрушающего и дистанционного контроля, получили широкое распространение в практике физико-химического анализа. Тем не менее, эти методы совершенно недостаточно используются для контроля поглощения сред (х > 10 —10 ), хотя известно, что спектральные и оптические характеристики наиболее чувствительны к изменению состояния вещества в области полос поглощения. Одной из причин этого является отсутствие табличных данных по оптическим постоянным.  [c.6]

Одним из перспективных методов оперативного контроля пространственно-временной изменчивости оптического состояния атмосферы является лазерная импульсная локация. Исследование ее информационных возможностей при решении разнообразных прикладных задач и вопросы технической реализации соответствующих измерительных комплексов освещены в монографиях [6, 7,. 15, 21, 22]. Однако в полной мере возможности этого нового оптического метода могут быть реализованы только в случае одновременного зондирования атмосферы на нескольких длинах волн с использованием перестраиваемых по частоте лазеров. Это утверждение справедливо при решении таких задач, как дистанционное зондирование атмосферных аэрозолей в целях определения их микрофизических характеристик, при необходимости одновременного учета эффектов рассеяния и поглощения в интерпретации локационных сигналов и т. п.  [c.87]

После обнаружения дефекта материала и его местонахождения важнейшей задачей контроля является определение его величины. Ее можно определить, например, по изображению, аналогичному рентгеновскому снимку. Акустический метод изображения (визуализации), как и рентгеновский метод, ставит своей целью получение оптического изображения структур, которые непосредственно не являются видимыми. Для этого используется взаимодействие структур со звуковыми волнами, например отражение и поглощение распределение звукового давления, испытавшее влияние интересующей нас структуры, при помощи большого числа акустико-оптических преобразователей превращается в оптическое изображение.  [c.292]

Большую ценность представляет лазер для целей неразрушающего контроля качества изготовления различных материалов и изделий машино- и приборостроения. В настоящее время нашли применение методы лазерного контроля по оптическому поглощению, эллипсометрический, голографический, фотоэлектрический и методы на основе магнито- и электрооптических эффектов.  [c.4]


Оптичеср1й неразрушающий контроль основан на взаимодействии электромагнитного излучения с контролируемым объектом и регистрации результатов этого взаимодействия. Методы, относящиеся к оптическому НК по ГОСТ 24521-80, различаются длиной волны излучения или их комбинацией, способами регистрации и обработки результатов взаимодействия излучения с объектом. Общим для всех методов является диапазон длин волн электромагнитного излучения который составляет 10" ...10 м (3 10 .,.3 10 Гц) и охватывает диапазоны ультрафиолетового (УФ), видимого (ВИ) ((3,8...7,8) 10" м) и инфракрасного (ИК) излучения, а также информационные параметры оптического излучения, которыми являются пространственно-временное распределение его амплитуды, частоты, фазы, поляризации и степени когерентности. Изменение этих параметров при взаимодействии с объектом контроля в соответствии с основными физическими явлениями (интерференции, поляризации, дифрак-ции преломления, отражения, рассеяния, поглощения и дисперсии излучения), а также изменения характеристик самого объекта в результате эффектов люминесценции, фотоупругости, фотозфомизма и др. используют для получения дефектоскопической информации. Оптическое излучение — это электромагнитное излучение, возникновение которого связано с движением электрически заряженных частиц, переходом их с более высокого уровня энергии на более низкий. При этом происходит испускание световых фотонов.  [c.53]

Из сказанного ясна необходимость накопления и систематизации надежных справочных данных по основным природным и промышленным средам в области поглощения. Между тем, систематизированные результаты для наиболее важной инфракрасной области 1—25 мкм в справочной литературе практически отсутствуют за исключением, пожалуй, данных по металлам. Это объясняется, на наш взгляд, экспериментальными трудностями исследования объектов в области основных колебательных полос поглощения молекул. Однако за последнее время и теория и аппаратурнометодическая база спектральны с методов исследования вещества получили значительное развитие, что существенно углубило и расширило возможности эксперимента. С другой стороны, появление прецизионных ИК-спектрофотометров, оснащенных ЭВМ, и возросший в целом метрологический уровень измерений позволили от традиционных исследований, основанных главным образом на анализе оптической плотности, перейти к измерениям констант, т. е. собственных параметров вещества. Все это привело к тому, что стало появляться все больше публикаций по оптическим постоянным и работ, в которых эти величины используются в той или иной форме. В периодической литературе возник, по-существу, банк констант для различных объектов. Методы спектроскопии нарушенного полного внутреннего отражения позволили повысить точность измерений оптических констант и значительно пополнить круг объектов, малодоступных для количественного анализа традиционными способами исследования. На базе этих методов удалось разработать приемы неразрушающего контроля поверхностных и объемных свойств изделий.  [c.4]

Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]


Для контроля правильности подбора условий работы по измерению спектров поглощения можно воспользоваться эталонными спектрами поглощения некоторых веществ. В таблицах Для этих спектров приводятся данные оптической плотности и прозрачности, которые тщательно проверены различными методами в различных лабораториях. В ультрафиолетовой области спектра роль эталонного может играть спектр поглощения раствора хромокалиевой соли (значения Т п Е см. в табл. 13). Этот спектр измерен, как видно из рис. 302, от 500 до 210 жр. и далее.  [c.386]

Методы спектральной прозрачности атмосферы применяют с оптическими схемами трассовых измерений в широком спектральном интервале. При контроле и мониторинге атмосферных аэрозолей природного и антропогенного происхождения результаты таких измерений обеспечивают качественно новые возможности анализа микрофизических и хршических характеристик наблюдаемого аэрозоля путем решения обратных задач (обращением измеренных коэффициентов аэрозольного ослабления). При контроле и мониторинге атмосферных газов удается на основании результатов измерений по методике дифференциального поглощения оценить содержание некоторых газов в атмосфере, не прибегая к спектрофотометрическим методам высокого разрешения.  [c.619]


Смотреть страницы где упоминается термин Метод контроля по оптическому поглощению : [c.179]    [c.168]    [c.499]    [c.781]   
Смотреть главы в:

Применение лазеров в машиностроении и приборостроении  -> Метод контроля по оптическому поглощению



ПОИСК



Методы контроля

Методы контроля оптические

Поглощение



© 2025 Mash-xxl.info Реклама на сайте