Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача при свободном движении жидкости в большом объеме

ТЕПЛООТДАЧА ПРИ СВОБОДНОМ ДВИЖЕНИИ ЖИДКОСТИ В БОЛЬШОМ ОБЪЕМЕ  [c.307]

Коэффициент теплоотдачи при свободном движении жидкости в большом объеме определяется из следующих уравнений подобия  [c.169]

Расчет теплоотдачи при пузырьковом кипении жидкости в большом объеме в условиях свободного движения можно выполнить, воспользовавшись с.1е-дующим приближенным уравнением подобия  [c.124]


Теплоотдача при свободном движении жидкости считается в большом объеме в том случае, если свободное движение, возникшее у других тел, расположенных в этом объеме, не оказывает влияния на рассматриваемое течение. Для тела, находящегося в большом объеме, когда движение жидкости наблюдается только у его поверхности, а остальная масса остается неподвижной, можно написать систему дифференциальных уравнений конвективной теплоотдачи как для частного случая общего математического описания (17.14) (17.16) (17.22).  [c.307]

Наиболее простым и, вместе с тем, важным для установления общих закономерностей является кипение в большом объеме при свободном движении жидкости. На рис. 18.1 изображены зависимости коэффициента теплоотдачи а и поверхностной плотности теплового потока й = аМ от температурного напора при кипении воды в этих условиях.  [c.217]

Принято [Л. 5] различать следующие условия процесса теплоотдачи при кипении кипение в большом объеме при свободном движении жидкости, кипение в большом объеме при вынужденном движении и кипение внутри труб.  [c.94]

Коэффициент теплоотдачи в условиях свободного движения в большом объеме зависит от физических свойств жидкости, температурного напора и давления. На рис. 28-1 показан график измене-, ns 3 ния коэффициента теплоотдачи воды при кипении и зависимость плотности теплового потока от  [c.451]

Как указывалось выше (п. 8.2.3), теплообмен при развитом пузырьковом кипении полностью управляется своими внутренними механизмами и не зависит от скорости вынужденного движения. Однако это не означает, что вынужденное движение вообще не влияет на закономерности кипения. Прежде всего с ростом скорости течения жидкости Wq возрастает коэффициент теплоотдачи однофазной конвекции и, следовательно, при неизменной плотности потока q уменьшается перегрев стенки относительно. Это приводит к тому, что начало кипения в потоке жидкости происходит при тем больших q, чем выше скорость жидкости. Эта закономерность хорошо видна из рис. 8.5, на котором представлены сглаженные опытные зависимости q(AT), полученные одним из авторов [17]. Теплообмен происходил на омываемой потоком воды плоской пластине при давлении 3,92 бар. Кривая 1 соответствует кипению при свободном движении (в большом объеме). В условиях обтекания пластины потоком воды до начала закипания коэффициент теплоотдачи не зависит от плотности теплового потока и целиком определяется скоростью жидкости (кривые 2, 3, 4). С ростом теплового потока при постоянном а, растет температура стенки, и при некотором значении  [c.355]


Расчетные формулы вследствие трудности учета конкретных условий теплоотдачи не всегда точно совпадают с экспериментальными данными. Это обстоятельство способствовало экспериментальному решению многих задач теплоотдачи в условиях свободного движения в большом объеме. Результаты экспериментальных исследований по теплоотдаче различных жидкостей (Рг 0,7 воздухом, водородом, углекислотой, водой, анилином, четыреххлористым углеродом, маслами и др. давление газов изменялось в пределах р = 0,003 7 МПа) при свободном омывании тел простейшей геометрической формы и различных размеров (высота плоской поверхности /=0,25-ь6 м, диаметры труб т = 0,015-У-245 мм диаметры шаров ш = 0,03-ь16 м)  [c.310]

Рассмотренная картина движения жидкости относится к случаям, когда расположение и размеры поверхностей, замыкающих среду, на развитие свободного движения не влияют. Такое движение называется свободным движением в большом объеме. Коэффициент теплоотдачи при этом рассчитывается по следующим формулам  [c.213]

Вначале для простоты рассмотрим теплоотдачу в процессе кипения при свободном движении в объеме жидкости, размеры которого по всем направлениям велики по сравнению с отрывным диаметром пузыря. Такой процесс кипения (для краткости) называют кипением в большом объеме. В процессе подогрева вначале нагревается слой жидкости у стенки. Когда температура этого слоя станет ран-  [c.303]

На рис. 14.9, б показана установленная опытом зависимость дна от температурного напора А/для случая кипения воды в большом объеме при атмосферном давлении. В области между точками А н В, соответствующей А/ 5 °С и д = 5600 Вт/м , значение коэффициента теплоотдачи невелико и определяется условиями свободной конвекции однофазной жидкости. При дальнейшем повышении А/ плотность теплового потока быстро возрастает и при = 25 °С доходит до своего критического значения (7j,p T = 1,45 10 Вт/м (точка D). В этой области (между точками В и С) вследствие роста и движения пузырьков пара коэффициент теплоотдачи а также резко увеличивается и доходит до своего максимального значения 5,85 10 Вт/ (м К) у точки С, в которой при дальнейшем повышении А/ происходит изменение режима кипения. Пузырьковая форма парообразования (называемая также ядерной или ячейковой) переходит в пленочную, значение а резко падает, поскольку образовавшаяся пленка пара отделяет жидкость от нагретой стенки.  [c.254]

Теплоотдача при пузырьковом кипении в условиях вынужденной конвекции жидкости. Пусть процесс пузырькового кипения происходит в трубе, по которой течет жидкость. Вынужденное движение жидкости может привести к более интенсивной теплоотдаче по сравнению со случаем кипения в большом объеме при свободном движении жидкости. Увеличение интенсивности теплоотдачи произойдет в том случае, когда турбулентные возмущения, вызванные вынужденным движениСлМ жидкости, станут больше тех, которые вызваны пузырьковым парообразованием.  [c.267]

Вначале для простоты рассмотрим теплоотдачу в процессе кипения при свободном движении в обьеме жидкости, размеры которого по всем направлениям велики по сравнению с отрывным диаметром пузыря. Такой процесс кипения (д.ля краткости) называют в большом объеме. В процессе подогрева вначале нагревается слой жидкости у стенки. Когда температура этого слоя станет равной температуре насыщения, на отдельных частях поверхности нагрева начнут зарождаться и расти пузырьки пара. Достигнув размера, соответствующего они будут от[ ываться от поверхности и 11сплы-вать. Покинув слой, имеющий температуру насыщения, пузырь пара попадает в жидкость с более низкой температурой, где он конденсируется. Кипение жидкости на поверхности нагрева в условиях, когда температура жидкости вне слоя, прилегающего к поверхности, ниже температуры насыщения, называют /синением с недог-ревом.  [c.258]

По мере увеличения температуры стенки, а следовательно, и ее тепловой нагрузки, перегрев жидкости в пристенном слое увеличивается, в связи с чем равновесный размер пузырьков становится меньше. Таким образом, плотность распределеления одновременно сидящих на стенке пузырей увеличивается, как и густота заполнения жидкостного объема свободно движущимися пузырями. Это приводит к росту суммарной поверхности раздела двух фаз, а следовательно, к интенсификации парообразования. Мощным фактором, действующим в том же направлении, является многоочаговое возмущение пограничного слоя жидкости пузырями. При росте пузыря окружающая его жидкость оттесняется, после же отрыва пузыря менее нагретая жидкость устремляется к месту, где перед тем находился пузырь. Возникают пульсационные движения, которые в районе каждого центра парообразования периодически турбулизируют пристенный слой. Пока температурный напор мал, немногочисленные возмущения от отрывающихся пузырей не оказывают существенного влияния на осредненную во времени интенсивность теплоотдачи, и поэтому коэффициент теплоотдачи к кипящей жидкости может быть определен так, как будто никакого кипения и не происходит. По мере увеличения плотности теплового потока положение решительно изменяется интенсивность теплоотдачи начинает превышать уровень, отвечающий некипящей жидкости. Перемешивание жидкости вблизи поверхности нагрева из-за кипения столь энергично при больших тепловых нагрузках, что коэффициент теплоотдачи может оказаться почти независящим от того, развивается ли кипение в большом объеме или же при наличии вынужденного течения жидкости вдоль стенки.  [c.165]



Смотреть главы в:

Термодинамика и теплопередача  -> Теплоотдача при свободном движении жидкости в большом объеме

Теплопередача Изд.3  -> Теплоотдача при свободном движении жидкости в большом объеме

Теплопередача  -> Теплоотдача при свободном движении жидкости в большом объеме



ПОИСК



Движение жидкости свободное

Движение свободное

Объемы тел

Свободное движение в большом объеме

Теплоотдача

Теплоотдача в большом объеме

Теплоотдача при свободном движении в большом объеме

Теплоотдача при свободном движении жидкост

Теплоотдача при свободном движении жидкости



© 2025 Mash-xxl.info Реклама на сайте