Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение интеркристаллитное, причины

Трехкомпонентные сплавы на основе Си — Zn являются сравнительно пластичными, интеркристаллитное разрушение в них затруднено, поэтому в настоящее время только они из группы медных сплавов и находят практическое применение. В общем в качестве сплавов с эффектом памяти формы применяются трехкомпонентные сплавы с добавками А1, Се, 51, 5п, Ве. Одной из причин этого является то, что в области составов /3-фазы, в которой в двухкомпонентных сплавах Си — Zп (рис. 2.46) происходит термоупругое мартенситное превращение, Т превращения понижается до слишком низкой, поэтому необходимо регулировать Г превращения путем добавки третьего элемента. На рис. 2.47 по-  [c.102]


Как указано выше, в сплавах на основе Си границы зерен являются местами концентрации напряжений и служат причиной деформации скольжением и интеркристаллитного разрушения. Если подвергать образцы циклической деформации в условиях, в которых при однократном деформировании наблюдается кажущееся полное восстановление формы, то деформация скольжения накапливается, в результате чего изменяется вид кривых напряжение — деформация. При увеличении числа циклов нагружения в конце концов происходит усталостное разрушение. Почти во всех случаях оно является интеркристаллитным разрушением. Таким образом, важной проблемой является необходимость определения различных механических свойств сплавов на основе меди с целью их практического применения. Эта проблема подробно рассматривается ниже.  [c.110]

Если учесть, что причиной интеркристаллитного разрушения сплавов на основе Си является концентрация напряжений на границах зерен, то можно указать следующие два способа повышения пластичности сплавов при одновременном предотвращении интеркристаллитного разрушения  [c.129]

Применение на практике поликристаллических образцов обусловлено целым рядом положительных факторов. Однако в сплавах на основе Си описанное выше интеркристаллитное разрушение приводит к существенному уменьшению усталостной долговечности. Одна из причин наиболее широкого применения в настоящее время сплавов Ti — Ni, не подверженных интеркристаллитному разрушению, заключается в их значительно большей усталостной долговечности по сравнению с медными сплавами наряду с хорошей пластичностью. Чтобы ускорить практическое внедрение медных сплавов, необходимо установить механизм интеркристаллит-ного разрушения.  [c.118]

Описанные выше исследования выполнены на поликристаллических образцах, поэтому поле напряжений на границах зерен является очень сложным из-за взаимодействия между зернами. В связи с этим неясно, образовалась ли граница зерен, на которой возникла трещина, вследствие взаимодействия кристаллитов, в которых возникла большая концентрация напряжений. Для того чтобы установить причины интеркристаллитного разрушения, необходимо выполнить исследования в состоянии с контролируемой степенью концентрации напряжений, упрощая поле напряжений на границе зерен. В наибольшей степени этому требованию удовлетворяют бикристаллические образцы. Ниже описаны результаты исследований, проведенных именно на них.  [c.123]


Несимметричный бикристалл 1 содержит кристаллы, для которых разность упругой деформации на границе зерен имеет наибольшую величину из всех исследованных кристаллов. В этих образцах интеркристаллитное разрушение происходит уже при закалке. Эти бикристаллы характеризуются большой упругой анизотропией, поэтому термические напряжения на границе служат причиной образования трещин.  [c.126]

В несимметричных бикристаллах 2 лЗ разность упругих деформаций на границе зерен мала по сравнению с бикристаллами /, поэтому трещины при закалке не возникают. Однако при деформации несимметричных бикристаллов 2 даже при разных температурах макроскопическое разрушение во всех случаях происходит в упругой области (рис. 2.71). На рис. 2.72 показаны образцы после разрушения на микрофотографиях наблюдается типичное интеркристаллитное разрушение. Если при этом считать, что его причиной является концентрация напряжений, обусловленная разностью деформаций превращения на границе зерен, то, полагая, что напряжение, вызывающее превращение, зависит от Т деформации, необходимо учитывать и зависимость разрушающего превращения от Т. Однако экспериментально установлено, что разрушающее напряжение не зависит от Г и является почти постоянным. Поэтому можно счи-  [c.126]

В несимметричных бикристаллах 4 концентрация напряжений обусловлена не упругой анизотропией, а разностью деформаций превращения. Даже при изменении температуры и состава эти бикристаллы не разрушаются в упругой области, интеркристаллитное разрушение происходит в них всегда после превращения, как схематично показано на кривой напряжение — деформация (см. табл. 2.5). Разрушающее напряжение характеризуется такой же зависимостью от Г и состава, как и напряжение, вызывающее превращение. Как показано на рис. 2.73, трещина возникает в том месте, где некоторый специфичный мартенситный кристалл достигает границы зерен. При нагружении распространение трещины соответствует схеме распространения вдоль поверхности границы зерен. Стрелкой на рисунке обозначена вершина трещины, распространяющейся вдоль границы зерен. Эта фотография является прямым доказательством того, что концентрация напряжений, обусловленная разностью деформаций превращения на поверхности границы, является причиной интеркристаллитного разрушения в исследованных образцах.  [c.127]

При анализе возможных причин перехода сплавов железа, клoкньtx к отпускной хрупкости, от транс- к интеркристаллитному разрушению с ростом размера зерна авторы [173] отмечают, что хотя с ростом зерна инициирование трещин на границах зерен двойникованием становится более вероятным, чем инициирование в зерне скольжением, само по себе зарождение микротрещин на границах зерен, атакованных двойниками, недостаточно для объяснения обсуждаемого эффекта. Дело в том, что соотношение транс- и интеркристаллитных участков роста магистральной трещины должно определяться соотношением значений вязкости разрушения пр телу и границе зерна [177], а от места зарождения исходной микротрещины зависеть не должно. Однако микроскопические наблюдения [173] позволяют предполагать, что межзеренное разрушение в твердых растворах Ре — Р происходит не вследствие роста единичной магистральной трещины, а в результате слияния системы микротрещин докритического размера, образованных независимо в местах встречи двойников с границами зерен. Возможно, что существенную роль в зарождении и объединении таких микротрещин играет аккомодационное зернограничное проскальзывание, стимулированное переходом двойника через границы зерен [173]. Понятно, что при таком механизме разрушения преимущественное зарождение микротрещин на границах зерен крупнозернистых образцов приводит к преимущественно межзеренному излому.  [c.142]

Причпиоп разрушения титана и его сплавов могут быть 1акже жидкие металлы. В1 ервые разрушение по этой прич]п1с было отмечено при испытании на выносливость компрессора Вестингауз ХУ-54, в котором разрушился диск 16-й ступени [221, с. 152]. Причиной разрушения оказалось кадмирование болтов. При температурах работы компрессора кадмий плавится, а жидкий кадмий приводит к хрупкому разрушению [230]. Ртуть при комнатной температуре и при температурах 370 и 700° С [53. с. 267], жидкий цинк [221, с. 152] также вызывают хрупкое разрушение титановых сплавов. Замедленное разрушение под действием жидких металлов носит интеркристаллитный характер. Жидкий металл проникает по границам зерен, снижает межзеренную энергию и тем самым облегчает распространение трещнн.  [c.195]


Другие примеры интеркристаллитной коррозии. Различные примеры интеркристаллитной коррозии обсуждаются в разных местах этой книги. К ним принадлежит так называемая сезонная хрупкость латуни (стр. 603), проникновение припоев в металл, находящийся в напряженном состоянии (стр. 657), и каустическая хрупкость стали (стр. 434). Каустическая сода во всяком случае не единственное вещество, которое проникает в сталь, находящуюся под напряжениями. Кремер 2 описал, какое быстрое разрушение причиняют азотнокислый кальций и аммоний стальным сосудам даже когда поверхность, соприкасающаяся с раствором, испытывает лишь слабые напряжения. Холоднотянутые трубы также разрушаются при действии расплавленной селитры. Раудон утверждает, что олово, содержащее алюминий, обнаруживает ин-теркристаллитную хрупкость при коррозии в воздухе, т. е. коррозия сосредоточивается по границам зерен олово без алюминия не делается хрупким. Некоторые цинковые сплавы для отливки под давлением склонны к интеркристаллитной коррозии, — например, при действии пара. Повидимому, это происходит не за счет главных составляющих сплава, а вследствие наличия следов свинца, олова или других металлов. Согласно данным Льюиса эти же сплавы, изготовленные из цинка чистоты 99,99%, не причиняют неприятностей. Как указывают Фрай и Шафмайстер интеркристаллитная коррозия обыкновенно возникает при действии сравнительно слабых коррозионных агентов (так что коррозия идет только по границам зерен и отсутствует более общая и менее опасная коррозия) при наличии некоторого выпадения составляющих по границам зерен и в присутствии макро- или микронапряжений. Количество примесей, необходимых чтобы вызвать интеркристаллитную коррозию, часто  [c.571]


Смотреть страницы где упоминается термин Разрушение интеркристаллитное, причины : [c.109]    [c.117]    [c.120]    [c.123]    [c.126]    [c.127]    [c.143]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.137 ]



ПОИСК



Причинность

Разрушение интеркристаллитное

Разрушения причины



© 2025 Mash-xxl.info Реклама на сайте