Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диссипативные процессы в сверхтекучей жидкости

Обычное термодинамическое определение давления как средней силы, действующей на единичную площадку, относится к неподвижной среде. В обычной гидродинамике тем не менее не возникает вопроса об определении понятия давления (если не учитываются диссипативные процессы), так как всегда можно перейти к системе координат, в которой данный элемент объема жидкости покоится. В гидродинамике же сверхтекучей жидкости надлежащим выбором системы координат можно исключить лишь одно из двух одновременно происходящих движений, и потому обычное определение давления вообще не может быть применено.  [c.716]


Введение в гидродинамические уравнения членов, учитывающих диссипативные процессы в сверхтекучей жидкости, будет произведено в следующем параграфе. Но уже здесь сформулируем граничные условия к этим уравнениям.  [c.717]

ДИССИПАТИВНЫЕ ПРОЦЕССЫ В СВЕРХТЕКУЧЕЙ ЖИДКОСТИ 719  [c.719]

Диссипативные процессы в сверхтекучей жидкости  [c.719]

Для учета диссипативных процессов в уравнениях гидродинамики сверхтекучей жидкости надо (как и в обычной гидродинамике) ввести в них дополнительные члены, линейные по пространственным производным скоростей и температуры. Вид этих членов может быть установлен однозначным образом исходя из требований, налагаемых законом возрастания энтропии и принципом симметрии кинетических коэффициентов Онсагера (И. М. Халатников, 1952).  [c.719]

Вывести уравнение баланса для плотности энтропии сверхтекучей жидкости с учетом диссипативных процессов. Показать, что локальное производство энтропии положительно.  [c.216]

Особенно принципиальное значение имеют опыты П. Л. Капицы (1941), в которых он наблюдал встречное движение нормальной и сверхтекучей компонент сквозь широкие капилляры. Им было подробно изучено реактивное действие струи нормальной компоненты, установлен факт потенциального обтекания твердых тел сверхтекучим потоком, изучена топография затопленной струи нормальной компоненты, вытекающей из капилляра под влиянием выделяемого тепла. Так как все эти опыты были поставлены в условиях, когда внутри некоторого объема, соединяемого с гелиевой ванной с помощью капилляра, выделяется заметное количество тепла, а по концам капилляра измеряемая разность температур отсутствует, то сохранение формы струи тепловых возбуждений, наблюдавшееся Капицей на довольно больших расстояниях от сопла капилляра, свидетельствует о том, что внутри сверхтекучей жидкости инерционность распространения тепла не маскируется диссипативными процессами.  [c.666]

Наличие диссипативных процессов в сверхтекучей жидкости приводит к поглощению звука. Для исследования вопроса о распространении звука при наличии диссипации запишем общие уравнения (9.13) — (9.16) в линеаризованном виде  [c.75]

Избежав трудных проблем, связанных со строгим рассмотрением взаимодействующей жидкости Бозе—Эйнштейна, Тисса показал, что при определенных дополнительных предположеп1гях его модель не только представляет собой удобный отправной пункт для изучения запутанных явлений в жидком гелии, но что с ее помощью можно предсказывать и новые эффекты [39]. Эти дополнительные предположения касались поведения сконденсированной и обычной частей жидкости. По Тисса, эти части жидкости характеризуются различными гидродинамическими свойствами, а также и разными теплосодержаниями. Если в отношенни неконденсированной нормальной жидкости принимается, что она сохраняет свойства обычной жидкости или пара, то о сконденсированной сверхтекучей жидкости предполагается, что она не может участвовать ни в каких диссипативных процессах. Поэтому, например, колеблющийся в Не II диск будет испытывать трение со стороны нормальной жидкости, тогда как тонкий капилляр позволяет сверхтекучей жид-  [c.801]


Мы не будем более подробно останавливаться на вопросах, касающихся гидродинамики сверхтекучей жидкости. Распространение звука в жидком Не , а также процессы взаимодействия возбуждений, приводящие к различным диссипативным явлениям (вязкости, теплопроводности и т. д.), разобраны в многочисленных специальных работах и подробно изложены в обзорах Е. М. Лифщица [8] и И. М. Ха-латникова [7], к которым мы и отсылаем читателя.  [c.27]

Если длина пробега квазичастиц в сверхтекучей бозе-жид-кости мала по сравнению с характерными размерами задачи, движение жидкости описывается уравнениями двyx кopo tнoй гидродинамики Ландау (см. VI, гл. XVI). Диссипативные члены в этих уравнениях содержат несколько кинетических коэффициентов (коэффициент теплопроводности и четыре коэффициента вязкости). Вычисление этих коЭ( ициентов требует детального рассмотрения различных процессов рассеяния, многообразие которых связано с существованием двух типов квазичастиц—фононов и ротонов. В реальном жидком гелии ситуация усложняется еще и неустойчивостью начального участка фононного спектра. Эти вопросы здесь рассматриваться не будут.  [c.387]


Смотреть главы в:

Теоретическая физика. Т.4. Гидродинамика  -> Диссипативные процессы в сверхтекучей жидкости

Статистическая механика неравновесных процессов Т.2  -> Диссипативные процессы в сверхтекучей жидкости



ПОИСК



Диссипативный процесс



© 2025 Mash-xxl.info Реклама на сайте