Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВЫ ТЕОРИИ ПОЛЗУЧЕСТИ Основы линейной теории вязкоупругости

Решение конкретных задач на основе интегральных уравнений состояния сопровождалось развитием операторных методов. Правила обращения различных интегральных операторов в зависимости от свойств ядер ползучести и релаксации для решения задач линейной теории вязкоупругости развиты в ряде работ, например в теории наследственной упругости [38] (см. Приложение II).  [c.46]


Одним из основных вопросов в теории вязкоупругости является выбор ядер интегральных уравнений (1.5) и (1.6), нахождение резольвент, а также достоверное определение их параметров. Анализ экспериментальных кривых ползучести показывает, что прн малых t деформация после приложения нагрузки быстро нарастает, так что вначале кривая ползучести практически сливается с осью ординат. Попытки определения фактической скорости ползучести в опыте при о — onst для очень малых t оканчиваются неудачей, так как или скорость ползучести остается больше той, какая может быть измерена применяемыми регистрирующими приборами, или не удается исключить колебательные явления. В связи с изложенным многие исследователи пришли к заключению, что функция ползучести для реального материала должна обязательно иметь слабую (интегрируемую) особенность. Поэтому заметна тенденция использовать для анализа реологических задач ядра интегральных уравнений, имеющие слабую особенность при t =0. Систематизация таких ядер" и их резольвент проведена в работе [95] (табл. 1.1). Отметим, что дробноэкспоненциальная функция Ю. Н. Работнова может использоваться не только как ядро релаксации, но и как ядро ползучести, например, когда материал обнаруживает ограниченную во времени ползучесть. Использование ядра Эа для решения практических задач представляется особенно перспективным в связи со следующими обстоятельствами. Во-первых, на их основе Ю. И. Работновым [138] и М. И. Розовским [149, 150] разработан метод решения задач линейной вязкоупругости с применением принципа Вольтерры. Этими авторами создана алгебра операторов, согласно которой можно производить математические действия умножения, деления и т. д. над выражениями, содержащими интегральные операторы. Дальнейшее развитие алгебры операторов имеется в работах [65, 155]. Во-вторых, Эа — функции протабулированы и изданы отдельной книгой [142]. В-третьих, разработан достаточно эффективный метод определения параметров Эа — функции для реального материала на ЭВМ [126, 163].  [c.21]

Пологий сферический купол из железобетона под действием внешнего давления рассматривал Г. С. Григорян [43]. Арматура считается упругой, ползучесть бетона описывается линеййой наследственной теорией Маслова — Арутюняна. Уравнения для прогибов с учетом геометрической нелинейности исследуются на устойчивость, и определяется максимальное значение нагрузки, при которой оболочка устойчива на бесконечном интервале времени. Пологая сферическая оболочка из линейного вязкоупругого материала под действием внешнего давления с учетом геометрической нелинейности рассматривалась в работах [114, 200, 249, 278, 300]. На основе анализа роста прогибов определялось критическое время про-щелкйвания.  [c.253]



Смотреть страницы где упоминается термин ОСНОВЫ ТЕОРИИ ПОЛЗУЧЕСТИ Основы линейной теории вязкоупругости : [c.7]   
Смотреть главы в:

Основы теории упругости и пластичности  -> ОСНОВЫ ТЕОРИИ ПОЛЗУЧЕСТИ Основы линейной теории вязкоупругости



ПОИСК



Вязкоупругость

Вязкоупругость линейная

Линейная теория

Основы теории

Ползучесть и вязкоупругость

Теория линейной вязкоупругости

Теория ползучести



© 2025 Mash-xxl.info Реклама на сайте