Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамическая система гамильтонов диссипативная

В гл. 3 мы построили семейство приближенных методов решения задач с граничными условиями они сводятся к нахождению стационарной точки некоторого функционала, которая является также и точкой экстремума. В этой главе мы по возможности обобщим такие методы на задачи с начальными данными. Однако при рассмотрении вариационной формулировки эволюционных задач возникают дополнительные трудности. Например, в случае диссипативных систем после дополнения основной задачи сопряженной соответствующий им функционал 1 и,и ) уже не будет обладать такими экстремальными свойствами. Даже в таких эволюционных задачах, для которых существует точная вариационная постановка, как, например, динамические системы Гамильтона, стационарная точка не является экстремальной.  [c.156]


Существенные результаты настоящего раздела могут быть выведены на основании полуклассического рассмотрения. Пусть в месте нахождения динамической системы действует (обобщенная) сила F t), создаваемая диссипативной системой р считается с-числом. Оператор Гамильтона динамической системы представим в виде  [c.102]

Гамильтоновы динамические системы. В задачах небесной механики и теоретической физики значительную роль играют гамильтоновые системы и близкие к ним при учете диссипативных эффектов. Система Гамильтона — это динамическая система, уравнения движепия которой записываются с помощью единственной функции Гамильтона H(q, р) в виде  [c.21]

Виды динамических систем. По характеру ур-ний и методам исследования Д. с. делят на классы. Конечномерные и бесконечномерные (распределённые) Д. с.—системы с конечномерным и бесконечномерным фазовым пространством. В конечно-мерно.м случае консервативные и диссипативные Д. с. — системы с сохраняющимся и несохраняющимся фазовым объёмом. Г амильтоновы системы с ф-цией Гамильтона, не зависящей от времени, образуют подкласс консервативных систем. У диссипативных систе.м с неогранич. фазовым нространством часто существует ограниченная область в нём, куда попадает навсегда любая траектория. Д. с. с н е п р е-рывным временем (потоки) и Д. С. с дискретным временем (каскады) дискретность времени иногда отражает существо реального процесса (дискретность моментов прохождения импульса через усилитель п оптическом квантовом генераторе, сезонность в экологии, смена поколений в генетике н т. д.). Грубые и пегрубые Д. с. понятие грубости (структурной устойчивости) характеризует качественную неизменность типа движения Д. с. при малом изменении её параметров. Значения параметров, при к-рых система перестаёт быть грубой, наз. б и ф у р-к а ц и о н н ы м II (см. Бифуркация). При размерности фазового пространства больше 2 могут существовать целые области в пространстве пара.метров, где Д. с. оказывается негрубой.  [c.626]


Динамические системы - 2 (1985) -- [ c.15 ]



ПОИСК



Гамильтон

Гамильтонова система

Динамическая система гамильтонов

Зэк гамильтоново

Система диссипативная

Системы Гамильтона

Системы Гамильтона диссипативные

Системы динамические



© 2025 Mash-xxl.info Реклама на сайте