Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение Лагранжа обобщенно периодическое

Следовательно, но теореме существования 14 корням Аз = г, Ае = —i соответствует однонараметрическое семейство периодических решений уравнений (27), лежащих вблизи равновесного решения и имеющих период, приблизительно равный 2тг. Но эти решения уже известны они бьши найдены как обобщенные решения Лагранжа в конце 12, когда искались частные решения с эллиптической орбитой, близкие к круговым решениям Лагранжа. Используя известные формулы для решения задачи двух тел, легко установить, что при фиксированном значении постоянной интеграла площадей г>4 существует еще одно семейство эллиптических решений, параметром которых можно выбрать период т. Если положить с = os t — И4), 3 = 81п(4 — М4), то из уравнений (12 3), (12 4), (9) и (24) получается  [c.162]


Что касается самой Ковалевской [9], то она, исходя из факта, что все до нее вполне изученные гироскопические случаи (т. е. движение Пуансо и гироскоп Лагранжа) решаются в т. н. мероморф-ных (т. е. представляющих непосредственное обобщение рациональных дробей) однозначных функциях времени и в виду совершенства, достигнутого теорией таких функций, к которым причисляются все более сложные тригонометрические вроде тангенса, эллиптические функции и т. п., поставила себе целью найти все типы тяжелых гироскопов, для которых общее, т. е. при всяких системах начальных условий, решение задачи об их движении возможно в подобных (хотя бы и не периодических, как до сих пор) функциях. Для этой цели исследовательница применила собственно метод неопределенных коэффициентов, но к разложениям около так называемых особых точек, т. е. здесь таких значений I, где обычные разложения в ряды Тэйлора неприменимы (в случае мероморфности непременно так называемых полюсов). Она справедливо полагала, что разыскания в области особых точек (хотя для задачи динамики обычно и обладающих комплексными аффиксами, ибо для действительных I решения тут вообще однозначны и непрерывны) при всей их, так сказать, отвлеченности могут дать для характеристики предполагаемого решения гораздо больше, чем рассмотрение тэйлоровских разложений около обыкновенных точек с их сильно нивелирующими 4  [c.64]


Лекции по небесной механике (2001) -- [ c.0 ]



ПОИСК



Лагранжа решения

Лагранжевы решения

Обобщения

Периодические Лагранжа

Решение Лагранжа обобщенно

Решение периодическое



© 2025 Mash-xxl.info Реклама на сайте