Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синая Смейла

Возможность грубых систем со сложными движениями, каждое из которых само по себе экспоненциально неустойчиво, является одним из основных открытий в теории обыкновенных дифференциальных уравнений последнего времени (гипотеза грубости геодезических потоков на многообразиях отрицательной кривизны была высказана С. Смейлом в 1961 г., а доказательство дано Д. В. Аносовым и опубликовано в 1967 г., основные результаты о стохастичности этих потоков получены Я. Г. Синаем и Д. В. Аносовым также в шестидесятых годах).  [c.280]


Подкова Смейла и ее аналоги, с одной стороны, н введенное Я- Г. Синаем понятие марковского разбиения, с другой, вновь вызвали к жизни методы символической динамики. На сей раз обнаружилось, что эти методы являются эффективным средством анализа таких классических систем, как алгебраические автоморфизмы тора, нелинейные колебания и небесная механика. Можно надеяться, что в скором времени такие понятия, как символическая модель , топологическая марковская цепь и т. п., станут для изучающих конкретные системы столь же привычными, как инвариантный тор , разложение в ряд Фурье , показатели Ляпунова .  [c.6]

Символическая динамика для некоторых геодезических потоков восходит к Адамару и была развита Морсом (9]. Смейл [13] перенес се на случай подковы , а Адлер и Вейс [1] —на случай автоморфизмов тора. Синай [10], [И] доказал теоремы пп. С и Ъ для У-диффеоморфизмов, а в 15] они были обобщены иа случай диффеоморфизмов, удовлетворяющих аксиоме А.  [c.74]

Общая теория динамических систем традиционно делится на две большие ветви — топологическую динамику и эргодическую теорию. Методы символической динамики работают и там, н там, ио в настоящем сборнике эргодическая часть все-таки преобладает. В первой статье читатель найдет построение марковского разбиения для ограничения диффеоморфизма, удовлетворяющего аксиоме А, на множество не-блуждаюших точек и эргодическую теорию таких диффеоморфизмов. Существенное место здесь занимают термодинамический формализм , гиббсовские меры н вариационный принцип . Введенные Д. Рюэлем и Я- Г. Синаем по аналогии со статистической физикой эти понятия удачно вписались в традиционный для динамических систем круг. Это оживило эргодическую теорию гладких систем и уже принесло интересные результаты. Оказалось, например, что базисные множества диффеоморфизмов класса С , удовлетворяющих аксиоме А, имеют лебеговскую меру нуль. Замечательно, чю класс гладкости здесь нельзя понизить в пятой статье сборника описано построение толстой подковы Смейла , базисное множество которой имеет положительную лебеговскую меру.  [c.6]

В этой статье марковские разбиения используются для изучения минимальных множеств диффеоморфизмов, принадлежащих к некоторому классу, введенному Смейлом [9]. В [I] (или [15, ЗС]. — Ре5.) мы построили марковские разбиения базисных множеств 2 диффеоморфизмов f, удовлетворяющих аксиоме А (см. [9]), обобщив метод, примененный Синаем к диффеоморфизмам Аносова ([7], [8], [П]). При помощи этих разбиений удается представить f = f QsKaк факторсистему неприводимой топологической марковской цепи с конечным числом состояний [1, 4] (нли [15, теорема 3.18]. — Ред.) при этом отображение факторизации л эквивариантиым образом сопоставляет точкам некоторые последователь- ности символов.  [c.92]



Смотреть страницы где упоминается термин Синая Смейла : [c.23]    [c.148]   
Эргодические проблемы классической механики Регулярная и хаотическая динамика Том11 (1999) -- [ c.195 ]



ПОИСК



Синай



© 2025 Mash-xxl.info Реклама на сайте