Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проектирование радиационной защиты реактора

ПРОЕКТИРОВАНИЕ РАДИАЦИОННОЙ ЗАЩИТЫ РЕАКТОРА Принципы проектирования защиты реактора  [c.73]

Проектирование радиационной защиты реакторов — комплексный многоступенчатый процесс, состоящий из взаимозависимых этапов и включающий выбор материалов защиты, компоновку защиты, ее конструирование. При этом необходимо учитывать соображения безопасности, экономики и эксплуатационные требования. Неотъемлемой составной частью всех этапов проектирования является анализ полей излучения в защите, проводимый с той или иной степенью подробности и точности.  [c.73]


Проектирование защиты реактора — очень сложный процесс, на который оказывают влияние многие технические факторы. Например, переход к дистанционному обслуживанию отдельных помещений и выполнению некоторых операций может, с одной стороны, существенно облегчить требования к защите и тем самым повысить экономичность ЯЭУ, а с другой, это может привести к снижению надежности работы ЯЭУ в целом и тем самым косвенно снизить ее экономичность. Поэтому в каждом отдельном случае приходится рещать многочисленные задачи инженерного проектирования радиационной защиты реактора конкретно с учетом специфики данной ЯЭУ. Готовый проект защиты есть результат компромиссных рещений между весом, стоимостью, удобством эксплуатации и т. д.  [c.75]

На первой стадии проектирования радиационной защиты реактора предварительно выбирают материал защиты, свойства которого необходимо знать для расчета ослабления излучений. Далее, исходя из основных требований к защите, необходимо установить допустимые уровни излучения в различных помещениях (зонах) реактора. По величине и характеру потоков излучения и возможности доступа в реакторе и вокруг него можно условно выделить [56]  [c.78]

В зависимости от типа реактора компоновка технологического оборудования ЯЭУ, конструкция радиационной защиты реактора, а также выбор материалов имеют специфические особенности, которые необходимо учитывать при проектировании.  [c.81]

Для строгого решения задач проектирования корпуса реактора и его защиты необходимы кривые энергетической зависимости радиационной эффективности нейтронов в абсолютных единицах по отношению к изменению конкретных физико-механических свойств материала. Эти кривые, например, по отношению к изменению температуры хладноломкости при различных температурах облучения [50], изменению ползучести [51], те-  [c.71]

Известно, что резкое ухудшение радиационной обстановки в зоне расположения АЭС может произойти при возникновении аварийных ситуаций, следствием которых является пережог оболочек твэлов с последующим выносом радиоактивных продуктов деления в контур циркуляции теплоносителя. Поэтому вопросу предотвращения такого рода аварий уделяется самое серьезное внимание как на стадии проектирования, так и в процессе эксплуатации АЭС. Один из путей предотвращения пережога оболочек — использование системы аварийной защиты, автоматически останавливающей реактор при значительных отклонениях его состояния от расчетного.  [c.140]

При проектировании защиты реактора необходимо учитывать, что существенное влияние на вес, стоимость и габариты всей защиты оказывает правильная компоновка элементов обо рудования контура теплоносителя, размещенных внутри поме щения, окруженного вторичной защитой (подробнее см. гл. X) Некоторое оборудование, являющееся слабым источником излу чения, можно использовать в качестве элементов защиты реак тора. При этом следует учитывать возможность ухудшения ре монтоспособности этого оборудования из-за активации излуче нием реактора и ограничения по радиационной и тепловой стой кости отдельных частей этого оборудования.  [c.77]


В 1988 г. утверждены новые санитарные правила проектирования и эксплуатации атомных станций —СП АС—88, что явилось следствием постоянно осуществляемого в Советском Союзе совершенствования санитарного законодательства в части радиационной защиты человека при использовании источников излучения, производства электроэнергии и тепла. СП АС— 88 — третья редакция Санитарных правил. В отличие от ранее действовавших СП АЭС—68 и СП АЭС—79 новые Санитарные правила распространяются не только на атомные электростанции с реакторами любого типа, но и на атомные производители тепла (АТЭЦ, A T и др.), они учитывают основные положения новой редакции Норм радиационной безопасности НРБ—76/87 и новой редакции Основных санитарных правил работы с радиоактивными веществами и другими источниками ионизирующего излучения ОСП—72/87. Как и ранее, СП АС—88 — законодательный документ, обязательный для всех министерств и ведомств Советского Союза, проектирующих, строящих и эксплуатирующих АС.  [c.3]

Накопление радиоактивных продуктов деления в твэлах, чрезвычайно высокая их радиоактивность и связанное с этим весьма долговременное остаточное тепловыделение в активной зоне реактора после его остановки (рис. 4.3) вместе с высокой наведенной радиоактивностью материалов и теплоносителя — все это предъявляет особые требования к проектированию, сооружению и эксплуатации АЭС, ее основного оборудования, а также систем контроля, управления и защиты, систем гарантированного обеспечения ядерной и радиационной безопасности. Эти требования не имеют аналогии в теплоэнергетике, работающей на органическом топливе. Их удовлетворение в основном и вызывает увеличение в 1,5—2,5 раза удельных капитальных вложений в АЭС по сравнению с удельными капитальными вложениями в ТЭС. Такое увеличение связано с усложнением инженерных решений, с оснащением АЭС специальными дорогостоящими устройствами, оборудованием, приборами и специальными материалами, не имеющими применения в обычной энергетике. К специфическим устройствам и совружениям АЭС относятся система аварийного охлаждения и защиты реактора (САОЗ), защита от ионизирующего излучения, бассейны для охлаждения и выдержки отработавшего топлива, выгруженного из реактора, специальные машины для дистанционной загрузки и перегрузки топлива, система специальной вентиляции и фильтрации радиоактивных газов, специальная очистка теплоносителя первого контура от радиоактивных продуктов деления, устройства для дезактивации обору-  [c.94]

Мэе. Третья особенность — большие размеры источников. Так, объем химических реакторов, монжюсов, отстойников может достигать нескольких десятков кубических метров, объем подземных хранилищ высокоактивных отходов — нескольких сотен кубических метров [3], а протяженность труб с активными растворами — нескольких сотен метров. Большие размеры источников и протяженность коммуникаций обусловливают выбор бетона как основного наиболее экономичного и удобного материала защиты в производстве переработки делящихся материалов, хотя в отдельных случаях используются и другие материалы. Любое проектирование защиты начинается о изучения радиационных характеристик по технологическому процессу производства. Применительно к переработке продуктов деления вопросы технологии достаточно подробно изложены в работах [2—5]. Физика процесса деления наиболее полно изложена в работе [6].  [c.170]

Радиационные характеристики смеси продуктов деления являются исходными параметрами для расчета защиты, тепло-съема и собственно ведения технологического процесса. Они зависят в основном от трех факторов удельной тепловой мощности реактора хю вт/г (или плотности потока нейтронов Ф нейтрон1 см -сек) , продолжительности кампании Г и выдержки Для процессов переработки облученного топлива основными радиационными характеристиками смеси продуктов деления, которые в первую очередь необходимо знать при проектировании защиты, являются удельные активности  [c.183]


Смотреть страницы где упоминается термин Проектирование радиационной защиты реактора : [c.2]    [c.115]   
Смотреть главы в:

Защита от излучений ядернотехнических установок. Т.2  -> Проектирование радиационной защиты реактора



ПОИСК



Защита радиационная

Реактор



© 2025 Mash-xxl.info Реклама на сайте