Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перпендикулярные полосы линейных молекул (см. также полосы

В случае перпендикулярных полос молекул, имеющих ось симметрии порядка выше второго, когда верхнее или нижнее состояния (или то и другое) являются вырожденными колебательными состояниями, постоянная С,- колебательного момента количества движения входит в формулу для серии ветвей Q (ср. 4,60), и поэтому мы не можем непосредственно определить разность А — В. Коэфициент при в формуле для ветвей попрежнему дает (Л — В )— А" — В"), коэфициент же при линейном члене дает 2 (Л —Л С,- — В ). Для нахождения А и Л" необходимо знать не только В и В", но также и С,-. В данном случае комбинационные разности не могут принести никакой пользы, так как соответствующие линии PQ и уже не имеют общего верхнего состояния (см. фиг. 118), и поэтому комбинационные разности не позволяют полностью разделить верхний и нижний вращательные уровни. Вместо (4,65) и (4,66) из (4,60) мы получаем (верхнее состояние вырождено)  [c.464]


В случае молекул точечной группы 1)зн, а также аналогичных молекул с плоскостью симметрии, перпендикулярной оси третьего или более высокого порядка, в отдельных ветвях подполосы (+/), К = 1 происходит чередование интенсивности, так как уровни Л) и Л 2 имеют различные статистические-веса в зависимости от величины ядерного спина одинаковых ядер. Однако-в каждой из двух ветвей, на которые расщепляется данная ветвь из-за удвоения -типа, чередование интенсивности происходит противоположным образом. Поэтому чередование интенсивности не будет наблюдаться до тех пор, пока не будут разрешены компоненты атого удвоения. Если в ветвях такой пары отсутствуют чередующиеся линии, то в результате будет наблюдаться одна ветвь с одиночными линиями, но с колебанием вращательной структуры аналогично тому, как это происходит в полосах П — П симметричных линейных молекул с нулевым ядерным спином одинаковых ядер. Амплитуда изменения интенсивности при чередовании зависит от числа одинаковых ядер и их спина точно так же, как в подполосах с К = О переходов А — А (см. выше).  [c.239]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Осн. колебат. полосы линейной многоатомной молекулы, соответствующие переходам из осн. колебат. состояния, могут быть двух типов параллельные ( ) полосы, соответствующие переходам с дипольным моментом перехода, направленным по оси молекулы, и перпендикулярные (i) полосы, отвечающие переходам с дипольным моментом перехода, перпендикулярным оси молекулы. Параллельная полоса состоит только из Я- и Р-ветвей, а в перпендикулярной полосе разрешена также и -ветвь (рис. 2). Спектр осн. полос поглощения молекулы типа симметричного волчка также состоит из II и 1 полос, но вращат. структура этих полос (см. ниже) более сложная -ветвь в 1 полосе также не разрешена. Разрешённые колебат. полосы обозначают V j. Интенсивность полосы Vj. зависит от квадрата производной (ddJdQji) или (da/dQ ) . Если полоса соответствует переходу из возбуждённого состояния на более высокое, то её наз. горячей.  [c.202]


Было подробно изучено несколько случаев перпендику,тярных полос молекул типа слегка асимметричного волчка. В частности, хорошим примером может служить перпендикулярная полоса радикала HN N, фотография которой приводится на фиг. 108. В данном случае вращательные постоянные верхнего п нижнего состояний почти одинаковы. По этой причине, а также из-за очень малой асимметрии молекулы полоса очень похожа по своей структуре на схематический спектр симметричного волчка, приведенный на фиг. 99 наблюдается ряд почти эквидистантных ( -ветвей, похожих по внешнему виду на отдельные линии. Между ними имеется тонкая структура, обусловленная Р- и 2 -ветвями. Эти полосы поглощения являются типичными перпендикулярными полосами, в точности подобными перпендикулярным инфракрасным полосам. Очень большое расстояние между -ветвями АО см ) и уменьшение этого расстояния в два раза в случае дейтерировапного соединения говорит о том, что небольшая величина момента инерции /4 обусловлена почти исключительно атомом Н. В соответствии с этим следует предположить, что атом Н находится вне оси линейной группы N N. Применение приборов с более высоким разрешением позволило довольно полно разрешить некоторые подполосы и определить описанным выше способом все три вращательные  [c.258]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



XYZ, молекулы, линейные (см. также

Линейные молекулы

Линейные молекулы полосы

Перпендикулярность

Перпендикулярные полосы



© 2025 Mash-xxl.info Реклама на сайте