Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYZ, молекулы, линейные (см. также

Приведенное выше рассмотрение не дает полного описания молекулярной системы, поскольку мы пренебрегли тем обстоятельством, что молекула может также враш,аться. Согласно квантовой механике, враш,ательная энергия также квантуется и в случае линейного жестко закрепленного волчка (например, жестко закрепленная двухатомная или линейная трехатомная молекула) может быть представлена в виде  [c.94]

Распределение электронной плотности определяет многие физико-химические свойства молекул. С этой величиной непосредственно связана их форма, т. е. равновесная конфигурация ядер. В процессе возбуждения возможны переходы от линейной к плоской форме и от плоской к пространственной. Перераспределение электронной плотности при поглощении или испускании света нередко сопровождается изменением величины и направления дипольного момента молекул, а также их поляризуемости. Различные электронные состояния имеют неодинаковые кислотно-основные свойства, реакционные способности и другие химические параметры.  [c.15]


Параллельные колебания 294, 310, 315 Параллельные полосы линейных молекул (см. также полосы — Е) 296, 409 молекул со свободным или заторможенным внутренним вращением 529 симметричных волчков 230, 336, 443, 445, 447  [c.618]

Ядерные статистики, влияние па вращательные уровни асимметричных волчков 67, 494 линейных молекул 28, 400 симметричных волчков 41, 437 Ядерные триплетные уровни (модификации) тетраэдрических молекул (см. также вращательные уровни F) 52 Ядерный спин влияние на вращательные уровни асимметричных волчков 67, 494 линейных молекул 28, 400 симметрических волчков 39, 50, 437 сферических волчков 52, 477 влияние на теплоемкость и теплосодержание 544  [c.626]

В случаях атомов, двухатомных молекул, а также линейных многоатомных молекул влияние электронного спина на уровни энергии легче понять с помощью векторной модели, без применения теории групп. Но векторная модель неприменима в случае молекул, принадлежащих к точечным группам с симметрией конечного порядка, т. е. в случае нелинейных молекул (а также атомов в кристалле). Причина состоит в том, что число типов симметрии здесь не бесконечно (и часто очень мало), и поэтому отсутствует однозначное соответствие между различными значениями S и типами симметрии, которое имеется в случае атомов, двухатомных и линейных многоатомных молекул. Вследствие этого необходимо установить типы симметрии спиновых функций при различных значениях S для всех основных точечных групп. Теперь это легко сделать, так как известны типы для точечной группы надо только установить, на какие типы распадаются типы группы при переходе к точечным группам более низкой симметрии. Результат приведен в табл. 56 приложения И.  [c.24]

Возмущения. Кроме таких возмущений, которые приводят к систематическим отклонениям уровней от их нормальных положений или к расщеплению близких компонент вырождения, здесь, как и в линейных молекулах, бывают также несистематические возмущения, распространяющиеся только на небольшое число вращательных уровней одного колебательного уровня.  [c.119]

Для линейных молекул, подобных молекуле СОг, также можно использовать две модели.  [c.376]

В достаточно плотном газе за счет межмолекулярного взаимодействия происходит полное или частичное снятие вырождения энергетических уровней молекул, а также сильное перемешивание состояний с различными М и /. В [3] отмечается, что дипольные моменты переходов между такими состояниями можно представить также в виде суммы линейных и круговых диполей. При отсутствии внешних полей постоянные дипольные моменты молекул равномерно распределены по всем ориентациям, дипольные же моменты отдельных переходов анизотропны. Следовательно, газ, даже в отсутствие внешнего поля, является поляризационно неоднородной средой, и результат взаимодействия излучения с газом а, следовательно, и форма контура спектральной линии будет зависеть от поляризации излучения.  [c.103]

Если у падающего плоскополяризованного света направление вектора электрического поля совпадает с направлением одной из осей системы координат у г, то и соответствующий индуцированный момент совпадает с направлением поля. Рассеянный такой молекулой свет также линейно поляризован (см. введение). Но если направление Е в падающей волне не совпадает с какой-нибудь из осей молекулярной системы координат, то в рассеянном свете будет наблюдаться конечная деполяризация (рис. 4). Разумеется, наблюдатель не может приспособить свои наблюдения к системе координат, связанной с молекулой, непрерывно меняющей свое  [c.71]


Для всех других веществ теплоемкость изменяется в некоторых пределах с температурой. Характер изменения зависит от агрегатного состояния вещества и сложности молекулы. В среднем интервале температур у большинства жидкостей и твердых тел, а также у некоторых двухатомных идеальных газов теплоемкость возрастает линейно с температурой согласно соотношению  [c.49]

Широко употребляются также водородные, натриевые лампы и т. д. Излучение водородной лампы создается атомами и молекулами водорода, возбужденными при разряде газа. Такие лампы являются источниками как линейного, так и сплошного спектра. Натриевые лампы дают излучение, основная часть которого (около /я) приходится на две интенсивные линии в желтой области с длинами = 5890 А и Я.2 = 5896 А.  [c.377]

В предыдущем параграфе мы рассматривали оптически однородную среду, плотность которой по всему объему постоянна. Однако вследствие теплового движения молекулы распределены в пространстве не строго равномерно. В каждый момент времени имеются отклонения от равномерного распределения, т. е. число молекул в единице объема испытывает колебания (флуктуации). Схема флуктуаций плотности изображена на рис. 23.9. В рассматриваемой среде выделены три объема. В объеме 1 плотность молекул близка к средней, в объеме 2 имеет место флуктуация с увеличением плотности относительно ее средней величины, а в объеме 3 показана флуктуация плотности, обусловленная уменьшением плотности среды. Таким образом, благодаря флуктуациям плотности среда становится мутной и в ней может происходить рассеяние света. Поскольку мутность среды не обусловлена никакими посторонними частицами, то рассеяние света в такой среде получило название молекулярного рассеяния. Так как линейные размеры объема, в котором происходит флуктуация числа частиц, значительно меньше длин волн видимого света, то молекулярное рассеяние называют также рэлеевским рассеянием.  [c.118]

Со строением полимеров связана и их способность при вытягивании из раствора или расплава образовывать тонкие, гибкие и прочные волокна, пригодные для изготовления текстильных материалов, а также гибкие пленки (см. 6-11). Такой способностью обладают многие из линейных полимеров с достаточно длинными молекулами пространственные полимеры не могут образовывать ни текстильных волокон, ни гибких пленок.  [c.106]

Амфифильные вещества имеют вытянутые молекулы (часто линейные) длиной 20—30 А, имеющие хорошо выраженные гидрофильные или олеофильные (жирные, гидрофобные) части (см. Гидрофильнасть и, нидрофоб-ность). К таким веществам относятся соли жирных к-т (наир., мыло—стеарат натрия), имеющие в составе молекулы гибкую парафиновую цепь С Н +1 ( жирный хвост ), присоединённую к полярной группе — головке . Головка образована группой атомов, соединённых полярными связями. Амфифильными молекулами являются также липиды и фосфолипиды, входящие в состав клеточных мембран (см. Клеточные структуры).  [c.290]

Смолообразные пластификаторы. Смолообразные пластификаторы часто называют полиэфирными смолами, но они не являются реакционноспособными соединениями, которые можно сополиме-ризовать с реакционноспособными мономерами (см. гл. VII). Они представляют собой невысыхающие смолы с длинной молекулой линейного строения и получаются взаимодействием двухосновных кислот и гликолей. Свойства смолообразных пластификаторов могут подвергаться существенным колебаниям при модификации их невысыхающими маслами, и в частности касторовым маслом, а также при замене некоторого количества гликолей глицерином. На свойства смолообразных пластификаторов оказывает влияние и комбинирование различных двухосновных кислот. Например, смола, полученная с применением фталевой и себациновой кислот, имеет более высокую вязкость и большую твердость, чем смола на основе одной себациновой кислоты.  [c.440]

Как уже указывалось выше, в растворах наблюдается в основном квадратичный электрохромизм. В кристаллах и пленках, содержащих ориентированные молекулы, наблюдается также линейный электрохромизм. В этом случае, измерив сдвиги полосы поглощения (люминесценции) в электрическом поле, необходимо разделить линейный и квадратичный эффекты. Для этого используется зависимость электрохромизма от приложенного поля [126]. Для интерпретации эффектов используют зависимость дихроизма, наведенного электрическим полем, от длины волны [52, 53, 126].  [c.86]

Линейные трехатомные молекулы и плоские молекулы с числом атомов свыше трех. Для линейной трехатомной молекулы (симмэтричной или несимметричной) при предположении центральных сил мы получили бы, что частота перпендикулярного (вырожденного) колебания равна нулю. Это очевидно, так как при таком колебании расстояния между атомами не изменяются (если только не учитывать более высоких приближений). Иначе говоря, при подстановке в уравнения (2,165) и (2,166) значения а = 90°, наблюденному значению частоты, отличающемуся от нуля, будет соответствовать бесконечно большое значение 033. Отсюда вытекает, что предположение о центральных силах неприменимо для линейных молекул. Следует также ожидать, что оно является очень плохим приближением для других трехатомных молекул с очень большим значением угла.  [c.180]


Пять комбинационных частот жидкого С4Н2, наблюденные Тиммом и Мекке [862], (см. табл. 91) нельзя интерпретировать как пять основных частот VI, 2. в г> активных в комбинационном спектре, так как частота безусловно принадлежит симметричным колебаниям СН и должна иметь значение примерно 3350 см (по аналогии с СаН , см. фиг. 95). Такая частота не наблюдена экспериментально. Однако, если предположить, что неактивная комбинационная частота Vв появляется в жидкости благодаря взаимодействию с другими молекулами (см. также СгЛг стр. 326) или благодаря отклонению от строгой линейной структуры, вероятно имеющемуся в газе, то пять наблюденных комбинационных частот можно интерпретировать как 3, Чд, V, (в порядке их  [c.348]

Единственными другими линейными многоатомными молекулами, для которых имеются достаточно обширные данные, являются молекулы и СдНВ. Для экономии места мы не приводим здесь всех значений 5[г,]. Вместо этого в табл. 129 собраны значения величин В[о], В , /[о] и 4 для указанных молекул, а также и для всех других исследованных линейных молекул.  [c.424]

В качестве примера на фиг. 123 показана параллельная полоса молекулы СНзР в обычной инфракрасной области (основная частота Vз) и на фиг. 124 — параллельная полоса молекулы СН3—С =С—Н в фотографической инфракрасной области (обертон ЗvJ). На втором снимке хорошо видно схождение линий. Из среднего расстояния между линиями в полосах получено грубо приближенное значение для величины 2В. Для более точного определения постоянных и необходимо применять такой же метод, как и для линейных молекул (см. также ниже).  [c.448]

XoYjY , изотоп молекулы 253 XVZ, молекулы, линейные (см. также Линейные молекулы) влияние ангармоничности на колебательные уровни 230 вращательные постоянные Z) и a 26,405 выражение для частот нормальных колебаний и силовые постоянные 191, 209 изотопический эффект 250  [c.615]

Легко видеть, что если в спектре линейной молекулы проявляются возбужденные уровни пернендикулярного колебания (например, при испускании света или нри поглощении при высокой температуре), то колебательная структура спектра может оказаться чрезвычайно сложной, если электронно-колебательное взаид1одействие велико. По этой причине колебательный анализ группы полос Сз около 4050 Л (переход П — Ч]) представлял. значительные трудности, хотя молекула линейна как в верхнем, так и в нижнем состояниях. Здесь дело не только в сильном электронно-колеба-тельном взаимодействии, но также и в том, что частота V2 очень мала в основном состоянии (63,5 см ) и значительно больше (307 rлi ) в верхнем состоянии. По этим причинам переходы с Ду — +2, +4, обычно весьма слабые, обладают сравнительно большой интенсивностью, и, кроме того, горячие полосы очень интенсивны даже нри комнатной температуре.  [c.159]

Очень похожая картина наб.людается и в первой системе полос поглощения молекулы S2, также нелинейной в возбужденном состоянии и линейной в основном. Здесь возбужденное состояние является компонентой типа состояния (гл. V, разд. 1,в), которое переходит в состояние Ац линейной конфигурации, не комбинирующее с основным состоянием Поэтому  [c.172]

Изогнутая трехатомная молекула, образовавшаяся (при возбуждении) из несимметричной линейной молекулы, относится к точечной группе s, а из симметричной линейной молекулы — к точечной группе v с осью симметрии второго порядка (Сг) в плоскости изогнутой молекулы. Для изогнутых молекул с четырьмя, пятью и более атомами, которые образуются из симметричных линейных молекул, точечные группы могут также быть ih, С 2 и i. Более подробно мы рассмотрим только три случая С , - h и s- На фиг. 81 показаны переходы между первыми вращательными уровнями для четырех различных типов изогнуто-линейных переходов в случае, когда верхнее состояние молекулы относится к точечной группе С и, а в нижнем ( Sg) состоянии молекула линейна (точечная группа Do h). Свойства симметрии враш ательпых уровней приведены для четырех типов электронно-колебательных уровней точечной группы С2в- В скобках приводятся соответствуюш ие типы для группы С2h- При этом предполагается, что в случае точечной группы ось С 2 направлена по оси Ь, а в случае С ал — по оси с. Примененная здесь классификация врап ательных уровней по свойствам симметрии соответствует вращательной подгруппе, а не полной группе симметрии (гл. I, разд. 3,г). Для точечной группы s две левые схемы соответствуют состоянию типа А, две правых — состоянию типа А". Кроме того, для этой точечной группы вращательная подгруппа не обладает никакой симметрией, и, следовательно, обозначения А ж В вращательных уровней могут быть опущены. В нижнем состоянии, для которого приведен только самый низкий колебательный уровень (Z = 0), свойства симметрии S ж а онределены, разумеется, лишь для симметричных молекул. Помимо полных типов симметрии, на схеме обозначены также свойства симметрии вращательных уровней (+или—) в соответствии с правилами, приведенными в гл. I, разд. 3,а и 3,г (где рассматривается поведение волновой функции при инверсии).  [c.196]

Наблюдались две системы полос испускания подобного типа упоминавшиеся ранее полосы NH2 в спектрах испускания различных пламен, в спектрах разрядов, а также в спектрах комет. Единственное отличие от спектра поглощения заключается в том, что в спектре испускания появляются полосы, у которых в нижнем состоянии возбуждено по одному или по нескольку квантов одного или большего числа колебаний. Второй является система полос в спектре пламени окиси углерода, которые оставались не отнесенными в течение нескольких десятилетий. Однако недавно Диксон [283] показал, что эти полосы обусловлены изогнуто-линейным переходом в молекуле СОз- Все наблюдавшиеся полосы связаны с переходами с двух самых низких колебательных уровней возбужденного состояния (типа В2), в котором молекула сильно изогнута (0 122°). В нижнем же (в основном) -состоянии, в котором молекула линейна, в переходах участвуют высокие возбужденные колебательные уровни. Наблюдается характерное чередование четных и нечетных подполос в последовательных полосах прогрессии по 2, однако колебательная структура усложнена наличием резонанса Ферми. Переход относится к параллельному типу (фиг. 90, а), т. е. К = I" и были идентифицированы полосы со значениями от О до 4. Определение величины А — В ъ возбужденном состоянии не может быть произведено непосредственно из спектра (поскольку АК = 0), как и в случае спектра поглощения СЗг- Для этого необходимо знать разности энергий между уровнями с различными значениями I в нижнем состоянии. В случае молекулы СО2 такие разности энергий могут быть получены экстраполяцией данных из инфракрасных спектров (Куртуа [246]). Полученные вращательные постоянные верхнего состояния приведены в табл. 64 приложения VI.  [c.218]

Чертеж элементарной единицы просфанства симметрии подобий есть черчеж положения атомов в молекуле воды НгО, линейный отрезок деленный в золоте, и треугольник описывается одним и гем же уравнением. Отрезок, деленный в золоте, устанавливает связь трех величин двух его частей и целого. Целое и его части можно выразить как х , х и 1, но и треугольник А-ромба VФ также имеет отношение сторон 1, х и х . Значит, деление отрезка в золоте - частный случай треугольника л/ф (рисунок 3.8) [4].  [c.150]


НОЙ линейной молекуле возможны синфазные колебания двух крайних атомов с одинаковой амплитудой, если при этом средний атом также колеблется, но его смещение в каждый момент противоположно смещению двух крайних (рис. 423, б). Иначе говоря, если крайние атомы колеблются синфазно, а средний атом но отношению к ним про-тивофазно, и если при этом амплитуда колебаний среднего атома вдвое больше, чем каждого из крайних, то, как легко видеть, центр тяжести молекулы будет оставаться неподвижным, т. е. закон сохранения импульса будет соблюден. Ясно, что период этих колебаний будет отличен от периода противофазных колебаний при покоящемся среднем атоме. Различие периодов обусловлено тем, что величины сил, возникающих при смещении двух крайних атомов в этих двух типах колебаний, по-разному зависят от величин смещений.  [c.649]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]

Остановимся еще на одной особенности ковалентной связи. Выше при решении уравнения Шредингера для молекулы водорода мы конструировали волновые функции с помощью линейной комбинации атомных орбиталей, выбирая за стартовые атомные орбитали изолированных атомов. Однако такой прямолинейный подход не всегда оказывается успешным и, например, для молекул и кристаллов, содержащих атомы углерода (а также кремния, германия и т. д.), он не привел к успеху. Так, изолированный атом С имеет электронную конфигурацию (ls) (2s) 2px2py. Естественно было ожидать, что углерод окажется двухвалентным с двумя перпендикулярными связями. Однако четырехвалентность углерода хорошо известна и, вообще говоря, она могла быть объяснена возбуждением при образовании молекул одного из 2з-элект-ронов и его переходом в 2рг состояние. В этом случае можно было ожидать появления трех более сильных и одной более слабой связей. Однако экспериментально было надежно доказано, что у углерода наблюдаются 4 равноправные связи с углами 109°28. Этот результат удалось полностью объяснить тем, что при вхождении атомов углерода в соединение (причем с самыми разными атомами углеродом при образовании алмаза, водородом или хлором при образовании СН4 или U и т. д.) происходит перестройка их электронной структуры так, что одна 25 и три 2р орбитали углерода гибридизуются, происходит sp гибридизация и  [c.111]

Правая часть (63.10) зависит не только от /, но также и от и J = iR , которые сами зависят от /. Таким образом, правая часть (63.10) при / = onst является функцией от / и 1/D = а, т. е. , = ,(/ , а). Энергия жесткой молекулы равна ДЛо.О). Разложим (63.10) в точке Rq,0) в ряд, ограничивающийся линейным по отклонениям членам  [c.317]

Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотношение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость.  [c.29]

Установлена также линейная зависимость между числом выделившихся молекул HjOj и количеством образующихся молекул окисла. Это дает возможность определить рост окисной пленки, что является очень важным при использовании этого метода в целях изучения кинетики роста пленок на алюминии при атмосферной коррозии. Существует предположение, что слой металла на границе с окислом является источником экзоэлектронов. Помимо очень важной информации о начальной стадии коррозии, метод эмиссии позволяет тщательно исследовать действие ингибиторов и стимуляторов коррозии на самых разных стадиях атмосферной коррозии. И. Л. Ройх с сотрудниками показали, что степень эмиссии у металлов различна и по мере роста окисной пленки она затухает.  [c.48]

Для лакокрасочных покрытий, предназначенных для защиты металлов от коррозии в атмосферных условиях, важной характеристикой является паропроницаемость. По мнению ряда исследователей, проникновение влаги через полимерные материалы протекает по-разному в одних существуют постоянные зазоры и поры, через которые в основном проникают молекулы воды, в других же зазоры возникают кратковременно в результате теплового движения макромолекул. Типичным представителем первого класса полимеров являются феноло-формальдегидные смолы, производные целлюлозы, полистирола, полиэтилена. Ко второму классу относятся полимеры типа кау-чуков, обладающие значительной упругостью. Влагопроницае-мость, а также влагопоглощение (водонабухание) находятся в сильной зависимости от структуры органических полимеров. При этом различают полимеры с трехмерной структурой и линейные, Полимеры с трехмерной структурой, например фенольные смолы, отличаются сильно разветвленной молекулярной структурой, вследствие чего молекулам водяного пара и воды приходится преодолевать большой путь. Поэтому влагопрони-цаемость фенольных смол относительно мала.  [c.115]


Смотреть страницы где упоминается термин XYZ, молекулы, линейные (см. также : [c.157]    [c.116]    [c.694]    [c.17]    [c.359]    [c.405]    [c.615]    [c.618]    [c.511]    [c.533]    [c.86]    [c.357]    [c.173]    [c.39]    [c.324]    [c.47]    [c.86]    [c.87]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



Колебательный момент количества движения (см. также в линейных молекулах

Линейные молекулы

Основные частоты (см. также отдельные для линейных молекул

Основные частоты (см. также отдельные для линейных симметричных молекул

Параллельные полосы линейных молекул (см. также полосы

Перпендикулярные полосы линейных молекул (см. также полосы



© 2025 Mash-xxl.info Реклама на сайте