Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализаторы оптические когерентные

Схема когерентного оптического анализатора пространственных структур приведена на рис. 24. Предмет располагается в передней фокальной плоскости линзы и освещается параллельным лучом лазера, В ее задней фокальной плоскости при этом формируется спектр Фурье предмета в виде характерной картины ярких точек различного размера, образующих некоторую структуру (в общем случае непериодическую). Пространственный фильтр выполняется в виде прозрачного экрана с набором непрозрачных точек, перекрывающих изображение спектральных компонент эталонного  [c.97]


Рис. 24. Схема когерентного оптического анализатора Рис. 24. Схема когерентного оптического анализатора
В гл. 9 было показано, что при взаимодействии световых пучков со звуковой волной в фотоупругой среде возникает много интересных явлений. Эти явления (например, брэгговская дифракция) могут быть использованы при создании модуляторов света, дефлекторов пучков, перестраиваемых фильтров, анализаторов спектра и устройств обработки сигналов. Использование акустооптического взаимодействия позволяет модулировать лазерное излучение или обрабатывать с высокой скоростью информацию, переносимую излучением, поскольку при этом отпадает необходимость в использовании каких-либо механических перемещающихся элементов. Это свойство аналогично электрооптической модуляции с той лишь разницей, что при акустооптическом взаимодействии вместо постоянных полей применяются ВЧ-поля. Последние достижения в применениях акустооптических устройств обусловлены главным образом наличием лазеров, которые генерируют интенсивные когерентные световые пучки, развитием эффективных широкополосных преобразователей, генерирующих упругие волны с частотами вплоть до микроволновых, а также открытием веществ, обладающих замечательными упругими и оптическими свойствами. В данной главе мы изучим различные устройства, основанные на брэгговской дифракции. Будут рассмотрены их характеристики пропускания, эффективность дифракции, рабочая полоса частот и другие параметры.  [c.393]

В этом разделе рассматривается итеративный алгоритм расчета фазовых ДОЭ, которые могут быть названы тловыми спектральными анализаторами, служащими для разложения амплитуды когерентного светового поля по ортогональному базису с угловыми гармониками. Сферическая линза фактически играет роль фурье-анализатора, так как она раскладывает светового поля на плоские волны или пространственные фурье-гармоники. Аналогично, комбинация линза + ДОЭ может быть названа анализатором Бесселя, Гаусса-Лагерра, или Цернике если данный оптический элемент раскладывает лазерный свет по соответствующему базису. Разложение по модам Гаусса-Лагерра используется при селекции поперечных мод на выходе многомодового волокна с параболическим профилем показателя преломления [44 . Базис круговых полиномов Цернике используется при анализе аберраций волновых фронтов [45.  [c.622]


Реализация ДОЭ для углового спектрального анализа. В 44 вводится понятие моданов — оптических элементов, используемых в качестве пространственных фильтров для анализа поперечно-модового состава когерентного лазерного пучка. Аналогичным образом можно рассматривать оптические элементы, служащие для разложения амплитуды светового поля по любому ортогональному базису, как спектральные анализаторы. На рис. 10.2 показана оптическая схема для спектрального анализатора светового пучка. Предположим, что пропускающая функция ДОЭ такого анализатора представляет собой линейную комбинацию конечного набора базисных функций фп,гп х у) выбранных с заданными наклонами (10.53). Если такой фильтр поместить рядом со сферической линзой и осветить световой волной с амплитудой F(i , у), то интенсивность света в точках (мте,то г . ) фокальной плоскости  [c.625]

Приборы телевизионной и когерентно-оптической структуроскопии. Во многих случаях информация о качестве объектов контроля может быть получена на основе анализа структуры их материала как поверхностной, так и объемной. Для этих целей создан ряд приборов, среди которых наибольшее распространение получили телевизионные анализаторы (ТВА) и когерентно-оптические процессоры (КОП). Действие ТВА основано на сканировании изображения изучаемых структур видеодатчиком (телевизионной камерой или устройством типа бегущий луч ) и последующей машинной обра-  [c.114]

Точное теоретическое соответствие распределения амплитуды поля в фокальной плоскости линзы и двумерного преобразования Фурье от амплитуды поля непосредственно за транспарантом возможно лишь в случае идеальной линзы с неограниченной апертурой. Конечность апертуры реальной линзы (объектива), а также неизбежные аберрации снижают точность преобразования Фурье и разрешение в спектре пространственных частот, поэтому к объективу фурье-анализатора предъявляют весьма высокие требования. Прежде всего у него должен быть значительный апертурный угол и хорошо скорректированные монохроматические аберрации. С другой стороны, фурье-объектив должен иметь возможно более низкий уровень когерентного шума, возникающего из-за попадания в спектральную плоскость рассеянного на неоднородностях, а также отраженного и переотраженного от поверхностей оптических элементов света [58]. Ясно, что для этого необходимо  [c.150]

Схема когерентного оптического анализатора про-сфанственных структур приведена на рис. 23. Предмет располагается в передней фокальной плоскости линзы и освещается параллельным лучом лазера. В ее задней фокальной плоскости при этом формируется спектр Фурье предмета в виде характерной картины ярких точек различного размера, образующих некоторую структуру (в общем случае непериодическую). Просфанственный фильф выполняется в виде прозрачного экрана с набором непрозрачных точек, перекрывающих изображение спекфальных компонент эталонного объекта. При этом часть высоких пространственных частот может быть пропущена через экран для создания контурного изображения объекта, что облегчает поиск дефектов и их привязку к предмету.  [c.513]

Для визуализации объектов при манипулировании разработан датчик изображения на жидком кристалле (США), работающий в режиме отражения когерентного пучка с оптической адресацией (рис. 3.17). Механизм преобразования изображения заключается в индуцированном двойном лучепреломлении света в слое жидкого кристалла 4. Распределение интенсивности записывающего пучка (некогерентный источник), проходящего через прозрачное окно преобразуется в пространственное распределение потока электроннодырочных пар в светопроводнике 2 из С З с сопутствующим пространственным перераспределением приложенного к прозрачным электродам 5 переменного напряжения смещения и. Напряжение и индуцирует двойное лучепреломление света, пропорциональное локальной интенсивности записывающего сигнала. Линейно поляризованный луч считывания, проходя через жидкий кристалл, отражается от диэлектрического зеркала 3, пересекает еще раз жидкий кристалл и выходит из устройства в виде эллиптически поляризованного пучка. Анализатор, расположенный на пути луча, пропускает только ту компоненту луча, поляризация которой перпендикулярна направлению первоначальной поляризации луча считывания. Пространственное распределение интенсивности луча считывания после выхода из анализатора оказывается пропорциональным пространственному распределению интенсивности входного изображения. Этот процесс реверсируется, так как распределение напряжения исчезает, когда перекрывается входной свет, без которого луч считывания остается линейно поляризованным и перпендикулярным анализатору, и поэтому выходной сигнал не пропускается г  [c.94]



Смотреть страницы где упоминается термин Анализаторы оптические когерентные : [c.191]    [c.262]    [c.157]    [c.158]    [c.255]    [c.257]    [c.517]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.97 ]



ПОИСК



Анализатор

Когерентная (-ое)

Когерентность



© 2025 Mash-xxl.info Реклама на сайте