Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации в пределах упругости Выражения через напряжения напряжения 3 — 17 — Зависимость

Экспериментально полученная параболическая функция отклика (см. формулу (4.54)) не позволяет обнаружить наличие или отсутствие малой линейной упругой области. Экспериментально доказано проведенными мною опытами по анализу волн конечной амплитуды наличие для ряда изученных материалов следующего факта вне зависимости от значения динамического предела упругости волна нагружения конечной амплитуды, если напряжения во фронте превосходят предел упругости, распространяется так, как будто никакой начальной линейной области не существовало. На основании параболической функции, описывающей зависимости напряжений от деформаций, могут быть получены следующие соотношения для скоростей волн Ср и скорости частицы в зависимости от конечной деформации, выраженные через интегралы теории волн конечной амплитуды  [c.273]



Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.0 ]



ПОИСК



228 — Деформации — Зависимость

293 — Зависимость от напряжения упругая

597 — Деформации и напряжения

Выражение

Деформации в пределах упругости Выражения через напряжения

Деформации в пределах упругости Выражения через напряжения напряжения

Деформации в пределах упругости и напряжения в пределах упругости

Деформации в пределах упругости упругие

Деформации и напряжения в пределах упругости

Деформация в пределах упругости

Деформация упругая

Зависимости напряжений от деформаций

НАПРЯЖЕНИЯ ЗА ПРЕДЕЛ УПРУГОСТ

Напряжения 5 — Зависимости

Напряжения Выражение через деформации

Напряжения Зависимость от деформаций в пределах

Напряжения за пределами упругости

Напряжения и деформации в пределах

Напряжения упругие

Предел упругости

Упругость напряжение

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте