Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Струя, ее свободная граница спутная

Исследования турбулентных пульсаций в пограничном слое на пластине, выполненные П. С. Клебановым в работе [ ], показали также, что во внешних частях пограничного слоя турбулентность носит такой же перемежающийся характер, как и в начальном участке трубы (см. 1 главы XVI, рис. 16.2 и 16.3). Осциллографические записи турбулентных пульсаций показывают, что положение довольно четкой границы между сильно турбулентным течением в пограничном слое и почти свободным от турбулентности внешним течением сильно колеблется во времени. На рис. 18.6 показано распределение коэффициента перемежаемости у по сечению пограничного слоя на продольно обтекаемой плоской пластине. Значение у = 1 означает, что течение все время остается турбулентным, значение же у = О показывает, что течение все время остается ламинарным. Мы видим из этого рисунка, что турбулентность в пограничном слое, начиная от у = 0,56 и до у = 1,26, носит перемежающийся характер. Такое же явление наблюдается в свободной струе и в спутном течении.  [c.511]


Свободная турбулентность наблюдается в следующих трех случаях (рис. 24.1) 1) на свободной границе струи, 2) в свободной струе и 3) в спутном течении за движущимся телом (в следе или тени ).  [c.649]

Как мы видели в предыдущем параграфе, теоретическое исследование плоского спутного течения и свободной границы струи привело именно к таким профилям скоростей.  [c.670]

Рассмотрим элементарные задачи, которые встречаются при профилировании. К ним относятся расчет точки внутри поля течения , на оси или линии симметрии на свободной границе на линии тангенциального разрыва в неравномерном потоке на висячей и отраженной ударных волнах. Кроме того, необходим расчет центрированной волны разрежения, а также расчет взаимодействия расширяющейся струи и спутного потока на кромке сопла. Некоторые из этих элементарных задач характерны для расчета и других типов сверхзвуковых внутренних струйных и внешних течений и подробно рассмотрены в литературе (см., например, [1, 27, 32]).  [c.129]

Описанные процессы силового, массообменного, акустического и теплового взаимодействий рабочего и окружающего газов, наблюдаемые в затопленных струях, имеют место и в свободных спутных струях (см. рис. 1.2, а). Если скорость спутного потока невелика, то процесс формирования струйного течения качественно не отличается от описанного выше При сверхзвуковых скоростях газов выравнивание статических давлений на кромке сопла, где струйный и спутный потоки встречаются впервые, сопровождается образованием исходящих от острой кромки сопла газодинамических разрывов — скачка уплотнения, центрированной волны разрежения или слабого разрыва. Определение типов исходящих в разные газы волн составляет задачу о распаде произвольного стационарного разрыва. Эта задача подробно рассматривается ниже в рамках моделей невязких газов. Решение ее существенно осложняется, если есть необходимость считать газы вязкими, а кромку сопла не острой. В этом случае в окрестности кромки сопла формируется тороидальная донная область с циркуляционным течением. Сильное силовое взаимодействие струйного и спутного газов происходит на некотором удалении от кромки и по характеру напоминает течение в ближнем сверхзвуковом следе за телом. В рамках модели невязкого газа возникающие в результате распада разрывы и исходящие с кромки сопла волны течения за ними разделяются поверхностью тангенциального разрыва. В реальных газах вдоль них, как и на границе затопленной струи (см. рис. 1.2), происходит смешение струйного и спутного газов. Криволинейность в общем случае тангенциального разрыва является причиной возникновения висячего скачка уплотнения внутри волны разрежения, если она образуется в результате распада произвольных разрывов. Поэтому при любых ситуациях в струе рабочего газа образуются бочки, связанные с выходом на границу отраженных от оси скачков уплотнения и их рефракцией на тангенциальном разрыве. В реальных газах эти скачки, изменяя свою форму в слое смешения, выходят в спутный поток, а в струе за ними формируется новая бочка. Как и в  [c.20]


Следует также обратить внимание на интересную статью Рейснера35), касающуюся спутной струи со свободной границей за винтом, которая рассматривалась как струя с возможной завихренностью.  [c.301]

Рис. 24.1. Свободная турбулентносты а) свободная граница струи б) свободная струя в) спутное течение (след). Рис. 24.1. <a href="/info/21621">Свободная турбулентносты</a> а) <a href="/info/248930">свободная граница струи</a> б) <a href="/info/20776">свободная струя</a> в) <a href="/info/249174">спутное течение</a> (след).

Теория пограничного слоя (1974) -- [ c.226 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг струями

Граница свободная

Граница струи свободная

Струя

Струя граница

Струя свободная

Струя спутная

Струя, ее свободная граница струя свободная



© 2025 Mash-xxl.info Реклама на сайте