Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вебера гармоническая

В работе [35с] получена формула Кирхгофа для потенциала перемещений Ф, выраженного через значения потенциала и его нормальной производной на поверхности тела. Для Ф найдено разложение по малому параметру сопряжения 8 путем разложения по 8 функций Грина. Для гармонических колебаний в работе [35(1] получены формула Грина для температуры 0 и формула Гельмгольца для потенциала перемещений Ф. В случае плоских гармонических колебаний [44а] получена формула Вебера для Ф и 0, выраженных через значения Ф, Ф,п, 0, 0,п, на границе области. Оригинальным путем получены в работе [7 аналоги формулы Клапейрона для сопряженной термоупругости, из которых следует единственность классического решения задачи Коши для уравнений термоупругости.  [c.238]


При Дз = О среди профилей семейства (3.34) содержатся параболический волновод (Дз < 0), исследованный, в частности, Иамадой [399], и параболический антиволновод ( >0), рассмотренный Мастеровым и Муромцевой (194]. В этих частных случаях входящая в формулу (3.24) функция может быть выражена через функцию Вебера (шраболичес-кого цнлиндра), о,5 1) [240], которая и использовалась авторами статей [194, 399]. В квантово-механической интерпретации величина к г) вида (3.34) при = 0 в зависимости от знака Дз соответствует потенциалу гармонического осциллятора или параболическому потенциальному барьеру. Эти задачи подробно анализируются в курсах квантовой механики (см., например [196, 23 и 50]).  [c.56]

Часто в партитурах можно встретить красиво звучащие соединения валторн с инструментами смычковой группы как в мелодических октавных соединениях, так и в гармонических (знаменитые соло валторн на фоне смычковой группы Чайковский. Симфония N9 5, Andante Бородин. Симфония N9 2, Andante Вебер. Опера Фрейшютц , Увертюра). Приводим несколько примеров соединения валторн со смычковыми  [c.320]


Динамика процессов химической технологии (1984) -- [ c.62 ]



ПОИСК



Вебер

Ряд гармонический



© 2025 Mash-xxl.info Реклама на сайте