Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Редкоземельные металлы спиновой момент

В кристаллах, состоящих из атомов, обладающих магнитным моментом, возможно определенное взаимное расположение этих моментов, что приводит к дополнительному межатомному взаимодействию. Такими моментами обладают атомы металлов группы железа Fe, Со, Ni с нескомпенсированной Зй -оболочкой и ряда редкоземельных металлов — Gd, Dy, Tb, Но и др. — с некомпенсированной /-оболочкой. Природа спиновых взаимодействий имеет квантовомеханический характер и связана с обменными взаимодействиями, а ее результатом является магнитное упорядочение, дополняющее в соответствующих случаях закономерное расположение атомов в кристаллической решетке [2].  [c.114]


ФЕРРОМАГНЕТИК—вещество, в к-ром ниже определ. темп-ры (Кюри точка Тс) устанавливается ферромагн. порядок магнитных моментов атомов (ионов) в неметаллич. веществах и спиновых магн. моментов коллективизированных электронов в металлич. веществах (см. Ферромагнетизм). Наиб, важными характеристиками Ф. являются точка Кюри 7 с, атомный магн. момент Л/ при О К, уд. самопроизвольная (спонтанная) намагниченность М(1 (на 1 г) при О К и уд. намагниченность насыщения (на 1 см ) при О К. Среди чистых хим. элементов к Ф. относятся только 3 переходных З -металла — Fe, Со, Ni — и б редкоземельных металлов (РЗМ) — Od, ТЬ, Dy, Но, Ег и Тп1 (табл. 1). В 3< -металлах и РЗМ Gd реализуется  [c.299]

Магнитные свойства. Наибольший интерес представляют магнитные свойства аморфных сплавов переходных (Мп, Fe, Со, Ni,. ..) и редкоземельных (Ей, Gd и т. д.) металлов с другими металлами и металлоидами. При достаточно высоких температурах эти сплавы находятся в парамагнитном состоянии. Температурные зависимости магнитной восприимчивости хорошо описываются законом Кюри — Вейсса. При понижении температуры ниже 9 в них возникает магнитное упорядочение. Магнитное упорядочение аморфных сплавов может быть ферромагнитным, антиферромагнитным, а также ферримагнитным. В ряде случаев наблюдается состояние спинового стекла. Спиновое стекло характеризуется замораживанием спиновых магнитных моментов в случайных направлениях при температуре ниже некоторой характеристической. Заметим, что состояние спинового стекла обнаружено также и в некоторых кристаллах.  [c.374]

Такое заключение согласуется и с электронной структурой атомов элементов, обладающих ферромагнетизмом. Так как магнитные моменты заполненных оболочек равны нулю, а внешние валентные электроны обобществляются в металле, то ферромагнетизмом могут обладать лишь переходные элементы, характеризующиеся наличием недостроенных внутренних оболочек. Такими элементами являются переходные металлы группы железа, имеющие недостроенную 3 d-оболочку, и редкоземельные элементы с недостроенной 4 /-оболочкой. Так как, с другой стороны, орбитальные магнитные моменты электронов этих оболочек заморожены и их вклад в магнитные свойства твердых тед весьма мал, то ферромагнетизм элементов этих групп может быть обусловлен только спиновыми магнит-  [c.293]

К первой фуппе редкоземельных металлов (РЗМ) относят элементы с атомными номерами от 57 до 71 La,Се, Рг, Nd, Pm, Sm, Eu, Gd, Tb, E>y, Ho, Er, Tm, Yb, Lu. Элементы от La до Eu причисляют к легким, а от Gd до Lu - к тяже.лым редкоземельныл эле.ментам. РЗМ имеют электронную конфигурацию общего вида 4 "Магнитная" 4/-оболочка последовательно за-по.лняется с уве,тичением атомного номера РЗМ от 57 к=0) у La до 71 ( 14) у Lu. Расположенная в глубине атома незастроенная 4/-оболочка экранирована от влияния кристаллического поля и "зavIopaживaния" орбитального момента атома не происходит. Поэтому магнитный момент в атомах РЗМ определяется как спиновым, так и орбитальным магнитными моментами 4/ -электронов. Для легких РЗМ, 4/ч)болочка которых заполнена менее чем наполовину, орбитальный и спиновый магнитные моменты устанавливаются антипараллельно и полный момент атома J==Z,-5. У гадолиния (и=7) орбитальные моменты электронов скомпенсированы (/,=0) и соответственно J=S. Для тяжелых РЗМ, у которых 4/оболочка заполнена более че.м наполовину, орбитальный и спиновый магнитные моменты устанавливаются параллельно и полный. момент атома J=L+S.  [c.22]


Среди металлов особую группу представляют редкоземельные элементы (лантаниды), у которых впервые появляются 4/-электроны. Заполнение 4/-подгруппы могло бы начаться в 4-м периоде после 36 Кг. Однако электронные уровни располагаются в последовательности 6s<5d<4f. Поэтому 4/-элект-роны появляются только в 6-м периоде (рис. 1.8). В этом периоде начинает заполняться б5-состояние (55 s и 56 Ва), хотя имеются две пропущенные подгруппы 4/ и 5d. У 57 La появляется 5 -электрон, а со следующего элемента 58Се начинает последовательно заполняться 4/-подгруппа. Этот процесс оканчивается у 70 Yb. Атомы редкоземельных элементов имеют большие собственные спиновые моменты, и эти элементы являются ферро- и антиферромагнетиками с низкими точками магнитных превращений (точки Кюри и Нееля). Энергетический уровень 4/-электронов расположен сравнительно глубоко относительно уровней валентных электронов, поэтому, как правило, 4/-электроны, в отличие от й -электронов, не принимают участия в химических связях. Интересным исключением является, по-видимому, церий, у которого при давлении / =12,4 кбар наблюдается любопытное полиморфное превращение. При этом превращении тип структуры (ГЦК) не меняется, а объем значительно уменьшается — - = 10% ). Это превращение стиму-  [c.16]

В работе Жаккарино и др. [53] методами ядерного магнитного резонанса и электронного парамагнитного резонанса были определены величина и знак поляризации электронов проводимости у соединений типа (РЗЭ) Alg. Спиновый момент S неспаренных 4/-электронов редкоземельного элемента поляризует спины электронов проводимости S таким образом, что спины ионов редкоземельного элемента и спины электронов проводимости располагаются в антиферромагнитном порядке, если допустить одинаковую поляризацию последних. Эта работа явилась первым определением знака поляризации электронов проводимости в магнитных металлах, которая дала возможность разобраться в магнитных свойствах соединений (РЗЭ)А12 и твердых растворов между ними.  [c.238]

Обменное взаимодействие между спиновыми и орбитальными моментами 4/-электронов атомов разкоземель-ных металлов велико, что может приводить к чрезвычайно большой кристаллической анизотропии. Измерения, проведенные на монокристаллах ТЬ и Оу, показали, что константы одноосной анизотропии этих металлов составляют 5,5-10 Дж/м при 10—20 К и 1,7-10 Дж/м при 150—200 К. Для металлов ТН, Но, Ег, Ти константа анизотропии также имеет порядок 10 Дж/м [2-1]. Таким образом, эффективное поле анизотропии редкоземельных металлов составляет примерно 10 кА/м, что на два-три порядка выше, чем значения поля анизотропии ферромагнетиков группы железа.  [c.49]

У атомов инертных газов (Не, Аг, N6 и др.) электронные оболочки магнитно нейтральны (их суммарный магн. момент равен нулю). Во внеш. магн. поле инертные газы проявляют диамагн. св-ва. Электронная оболочка атомов щелочных металлов (Ь1, Na, К и др.) обладает лишь спиновым магн. моментом валентного эл-на, орбитальный магн. момент этих атомов равен нулю. В результате атомы щелочных металлов парамагнитны. У атомов переходных металлов [Ре, Со, N1, редкоземельных металлов (РЗМ) и др.] не достроены й- и /-слои их электронных оболочек. Спиновые и орбитальные магн. моменты эл-нов этих слоёв не скомпенсированы, что приводит к существованию у изолированных атомов Ге, Со, N1 и РЗМ значит, магн. момента.  [c.357]


Смотреть страницы где упоминается термин Редкоземельные металлы спиновой момент : [c.629]    [c.326]    [c.682]    [c.538]    [c.630]    [c.310]    [c.810]   
Физическое металловедение Вып I (1967) -- [ c.238 ]



ПОИСК



Металлы редкоземельные

Момент спиновый



© 2025 Mash-xxl.info Реклама на сайте