Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нестабильность импульсной энергии

Пиковые плотности мощности в пятне фокусировки излучения при работе с телескопическим HP достигают значений 10 -Вт/см2, что на 2-3 порядка больше, чем при работе с плоским резонатором. Однако в плоскости фокусировки наблюдаются колебания пятен, особенно от пучка с дифракционной расходимостью, а на осциллограмме пички импульсов излучения этих пучков размыты, т. е. имеет место нестабильность положения оси диаграммы направленности и импульсной энергии. При увеличениях резонатора порядка 10 смещение пятна дифракционного пучка может быть соизмеримо с его расходимостью, а нестабильность импульсной энергии достигать значений 10-15%. Эта нестабильность обусловлена высокой чувствительностью HP к внешним механическим и акустическим воздействиям, к воздушным и тепловым потокам, к пыли, а также, возможно, нестабильностью и неоднородностью горения разряда и др.  [c.119]


Нелинейные кристаллы 6, 233, 242 Нестабильность импульсной энергии 119, 122, 123, 128, 135  [c.306]

В W-Ва-катоде подложкой является пористая губка из вольфрама. С целью выбора такого материала подложки катода, который имел бы наименьшее распыление в жестких условиях работы АЭ при высоких давлениях неона (когда обеспечивается высокая долговечность), был исследован катод из чистого вольфрама. Вольфрам из всех тугоплавких металлов имеет самую высокую температуру плавления — 3400°С. Вольфрамовое кольцо таких же размеров, как и W-Ва-катод, испытывалось в АЭ ГЛ-201. Для того чтобы разряд горел только с поверхности вольфрамового кольца и не перебрасывался на другие элементы, со стороны выходного окна в электрод вставлялась керамическая втулка из материала марки А-995 длиной 40 мм. Средние мощности излучения имели примерно такие же значения, как и в случае W-Ва-катода. Но нестабильность горения разряда имела место практически во всех режимах испытаний, которые приводили к существенным колебаниям импульсной энергии. Ценным результатом испытаний оказалось то, что на поверхности вольфрамового кольца имелись следы плавления и эрозии. Отсюда следует важный вывод, что даже самый тугоплавкий металл — вольфрам — под действием высоковольтного импульсного разряда ЛПМ начинает разрушаться и применять в качестве подложки катода другой материал нежелательно.  [c.50]

Применяют модуляторы двух типов пассивные и активные. Пассивный модулятор добротности представляет собою кювету с раствором красителя, например фталоцианинового, просветляющегося по мере прохождения через него света, что приводит к генерации мощного импульсного излучения (десятки мегаватт). Спустя несколько десятков наносекунд прекращается генерация поглощение света вновь возрастает. Такой модулятор недостаточно стабилен, и момент начала генерации трудно контролировать, что приводит к нестабильности энергии генерации, хотя с помощью пассивного модулятора можно получить одномодовый режим работы лазера.  [c.45]

При работе с телескопическим HP достигаются максимальные плотности мощности излучения — 10 -Ю Вт/см . Но не всегда при прецизионной обработке материалов требуются столь высокие плотности мощности. Зато к таким характеристикам излучения, как распределение интенсивности в плоскости фокусировки, стабильность положения оси диаграммы направленности и импульсной энергии, всегда предъявляются высокие требования, так как ими определяется качество обработки. В однозеркальном режиме работы, в отличие от режима с HP, выходное излучение обладает более высокой стабильностью оси диаграммы направленности и импульсной энергии. В режиме с одним выпуклым зеркалом при расходимостях близких к дифракционной ( реал = (2 3)0диф) нестабильность импульсной энергии не превышала 2-3%, а колебания оси диаграммы направленности практически не наблюдались. Заметное снижение нестабильности характеристик излучения при использовании HP достигалось путем герметизации пространства между зеркалами резонатора и выходными окнами АЭ и изоляции АЭ с резонатором от источника питания. Полностью избавиться от влияния механических воздействий и воздушно-тепловых потоков при работе с HP не удавалось, поскольку решение этой проблемы в производственных условиях представляет собой достаточно сложную техническую задачу. Распределение интенсивности в дальней зоне  [c.128]


Уменьшить плотность мощности фона можно путем увеличения длины оптического пути от ЗГ до УМ для нашего случая она должна была бы составлять около 70 м. В экспериментальной лазерной системе ЗГ-ПФК-УМ (см. рис. 5.1) длина оптического пути равна 7 м. Максимум мощности выходного излучения достигался с помощью регулируемой линии задержки 8. Суммарная мощность излучения на выходе системы при увеличении резонатора М = 200 в отсутствие диафрагмы 12 в ПФК составляла 38 Вт (около 60% мощности приходилось на линию Л = 0,58 мкм), при этом в фоновом пучке — 9,5 Вт, в первом резонаторном с геом = 0,14 мрад — 15,5 Вт и в дифракционном пучке (б диф = 0,07 мрад) — 13 Вт. Мощность фонового излучения ЗГ на входе УМ составляла 1 Вт. Осциллограммы импульсов излучения лазерной системы представлены на рис. 5.2. Размытость вершины импульсов излучения пучков с малой расходимостью на выходе ЗГ (см. рис. 5.2, а) свидетельствует о нестабильности импульсной энергии в пределах 10%. Эта нестабильность обусловлена высокой чувствительностью HP к механическим воздействиям и воздушно-тепловым потокам. На выходе УМ (см. рис. 5.2, е, г) относительная нестабильность импульсной  [c.135]

Для технологических применений важной характеристикой лазера является время выхода на стабильный тепловой режим, когда устанавливается ось диаграммы направленности и становится постоянной энергия импульсов излучения. На рис. 6.8 приведены осциллограммы импульсов излучения ЛПМ Карелия при работе ЗГ с телескопическим HP (М = 180, геом =0,15 мрад) и с одним выпуклым зеркалом (i = 3 и 63 см, (9геом = 0,3 и 3,6 мрад) в установившемся тепловом режиме. Как видно из осциллограмм, нестабильность импульсной энергии при работе ЗГ с HP составляет около 5%, а в однозеркальном режиме существенно меньше (около 2%), так как в последнем случае пучок излучения формируется в ЗГ за один проход.  [c.177]

В телескопическом HP, имеющем отверстие в центре глухого зеркала, формируется лишь один узконаправленный пучок 3 (см. рис. 4.6, а), который отстает от пучка сверхсветимости 2 на время одного двойного прохода излучения в резонаторе (At = 10 не — см.рис. 4.6, в). Это объясняется тем, что в такой оптической системе приосевые пучки — как сжимающиеся, так и многопроходные расширяющиеся — резонатором не поддерживаются. Расходимость пучка 3, как и при работе с резонатором без отверстия, при изменении М в пределах 5 < М 300 уменьшается от 2,5 до 0,115 мрад. В плоскости фокусировки при визуальном наблюдении видно одно яркое пятно, имеющее достаточно высокую стабильность. В распределении интенсивности в дальней зоне имеется несколько пичков (см. рис. 4.6, б), появление которых, вероятнее всего, связано с отражением излучения от границы отверстия в глухом зеркале. Относительная нестабильность положения оси диаграммы направленности и импульсной энергии пучка 3 значительно меньше, чем дифракционного. Характеристики выходного излучения исследовались при диаметрах отверстия 4, 8 и 10 мм. Мощность резонаторного пучка (рис. 4.9, кривая З ) при диаметре отверстия 8 мм для М — 5 составила 19 Вт (66% общей мощности), для М = 100 - 9,5 Вт (37%), для М 300 - 4,5 Вт (20%).  [c.123]

Таким образом, предложенная оптическая схема (см. рис. 4.13) позволяет в несколько раз и даже на порядок увеличить мощность излучения. Но так как система дополнительно по отношению к однозеркальному режиму включает четыре элемента, то заметно возрастает нестабильность положения оси диаграммы направленности и импульсной энергии и усложняется настройка системы.  [c.130]

Другой важный метод создания систем в нестабильных состояниях состоит в возбуждении при столкновении. Примерами, иллюстрирующими этот метод, являются возбуждения атомов в газах и образование нестабильных частиц при нуклон-нуклонных столкновениях. Рассмотрим последний пример более подробно. Для простоты будем считать, что воображаемый эксперимент проводится на встречных протонных пучках в системе центра масс, и будем игнорировать степени свободы, связанные со спином. Если протоны образуются при одинаковых условиях и являются моноэнергетическими, то образующиеся нестабильные фрагменты, рассматриваемые не как пары, триплеты и т. д., а по отдельности, будут находиться в смешанных состояниях, состоящих из люноэнергетических состояний с весами, соответствующими энергетическому спектру распада. При этом для странных частиц экспоненциальный закон распада наблюдаться не будет. Действительно, поддающимися наблюдению являются здесь только стабильные частицы. Любое нестабильное состояние должно быть когерентной суперпозицией состояний с различной энергией. Нестабильные частицы могут образоваться только в том случае, когда когерентная ширина исходного пучка по энергии отлична от нуля. Конечно, любой пучок частиц, созданный в ускорителе, имеет такую ширину. Это следует уже из того, что пучок является импульсным. Однако из приведенного выше рассмотрения видно, что нестабильные состояния, ширина которых больше когерентной ширины исходного пучка, образоваться не могут если все же они получены, то для них не будет наблюдаться четкий экспоненциальный закон распада.  [c.553]



Смотреть страницы где упоминается термин Нестабильность импульсной энергии : [c.123]    [c.145]    [c.282]    [c.122]   
Лазеры на парах меди - конструкция, характеристики и применения (2005) -- [ c.119 , c.122 , c.123 , c.128 , c.135 ]



ПОИСК



V импульсная

Нестабильность



© 2025 Mash-xxl.info Реклама на сайте