Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиальные смещения 439, 516, — колебания 449, 660, радиальных колебаний распространение

Радиальные смещения 439, 516, — колебания 449, 660, радиальных колебаний распространение 453 Разложение напряженного состояния 182, 364 Размерные величины 238  [c.670]

Для обработки металлов давлением могут быть применены также продольные колебательные системы, в которых направление распространения колебаний перпендикулярно действующему усилию. Очаг деформации в таких колебательных системах располагают в пучности или узле смещений стоячей ультразвуковой волны (рпс. 8). Системы с радиальными колебаниями инструмента могут быть созданы иа базе излучателей радиальных колебаний (рпс. 9).  [c.115]


Колебания могут распространяться в виде волн в определ. областях (сферич. слоях) внутри Солнца. Если эти слои снизу и сверху ограничены зонами, где волновое распространение невозможно, то волны отражаются от границ областей распространения и будут там захвачены. В результате многократного отражения от границ и интерференции захваченных волн образуются стоячие волны, к-рые часто называют собств. колебаниями или модами. Каждая мода имеет свою частоту (зависит от условий в области захвата) и определённую пространственную картину смещений сферич. поверхности разбиваются на отдельные колеблющиеся участки, разделённые вдоль меридианов и параллелей узловыми линиями, на к-рых газ неподвижен вдоль радиуса внутри области захвата колебания имеют пучности и узлы, а вне её — экспоненциально затухают. Знав частоту и общую картину колебаний на поверхности, можно восстановить радиальную структуру моды и определить условия в области захвата.  [c.581]

Пневмо- и гидрокамерные муфты и тормоза получают в последнее время широкое распространение в силу ряда достоинств возможности в широких пределах надежно и плавно регулировать передаваемый момент и скорость включения, компенсировать осевые и радиальные смещения соединяемых валов в пределах нескольких миллиметров без существенных осевых и радиальных нагрузок способности самокомпенсации износа прокладок или колодок, смягчения динамических толчков, гашения крутильных колебаний звукоизоляции высокой надежности и точности при работе в качестве предохранительных муфт отсутствии передачи на валы радиальных нагрузок.  [c.161]

Излучатели второго типа основываются на различных физич. эффектах электромеханич. преобразования. Как правило, они линейны, т. е. воспроизводят по форме возбуждающий электрич. сигнал. Большинство излучателей УЗ предназначено для работы на к.-л. одной частоте, поэтому в устройстве излучающих преобразователей обычно используются резонансные колебания механич. системы, что позволяет существенно повысить их эффективность. Преобразователи без излучающей механич. системы, напр, основанные на электрич. разряде в жидкости, применяются редко. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магни-тострикционные преобразователи и пьезоэлектрические преобразователи. Элект-родинамич. излучателп используются на самых низких ультразвуковых частотах, а также в диапазоне слышимых частот. Наиболее широкое распространение в низкочастотном диапазоне УЗ получили излучатели магнитострикционного и пьезоэлектрич. типов. Основу магнитострикционных преобразователей составляет сердечник из магнитострикционного материала (никеля, специальных сплавов или ферритов) в форме стержня или кольца. Пьезоэлектрич. излучатели для этого диапазона частот имеют обычно составную стержневую конструкцию в виде пластины из пьезокерамики или пьезоэлектрич. кристалла, зажатой между двумя металлич. блоками. В магнитострикционных и пьезоэлектрич. преобразователях, рассчитанных на звуковые частоты, используются изгибные колебания пластин и стержней или радиальные колебания колец. В среднечастотном диапазоне УЗ применяются почти исключительно пьезоэлектрич. излучатели в виде пластин из пьезокерамики или кристаллов пьезоэлектриков (кварца, дигидрофосфата калия, ниобата лития и др.), совершающих продольные или сдвиговые резонансные колебания по толщине. Кпд пьезоэлектрич. и магнитострикционных преобразователей при излучении в жидкость и твёрдое тело в низкочастотном и среднечастотном диапазонах составляет 50—90%. Интенсивность излучения может достигать нескольких Вт/см у серийных пьезоэлектрич. излучателей и нескольких десятков Вт/см у магнитострикционных излучателей она ограничивается прочностью и нелинейными свойствами материала излучателей. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрич. преобразователя вогнутой формы, излучающего сходящуюся сферич. или цилиндрич. волну. В фокусе подобных концентраторов достигается интенсивность 10 —10 Вт/см на частотах порядка МГц. В низкочастотном диапазоне используются концентраторы — трансформаторы колебательной скорости в виде резонансных стержней переменного сечения, позволяющие получать амплитуды смещения до 50—80 мкм.  [c.14]


С точки зрения практического применения наиболее важным является исследование условий передачи энергии, когда генератор колебаний излучает из скважинной жидкости. Случай акустического высокочастотного возбуждения, когда передача энергии в пласт происходит при распространении упругих волн в скважинной жидкости и прохождении их через систему обсадки скважины достаточно хорощо исследован. Например, В.Н. Крутиным [20] были исследованы энергетические соотнощения при излучении упругих волн из скважинной жидкости осесимметричным источником. Выявлялись связи энергетических характеристик поля с импедансом системы и временем его ревебрации. Исследовался характер влияния частоты и распределения амплитуд на поверхности излучателя на передачу энергии в горный массив. В частности, для гармонического распределения амплитуды смещения источника с фиксированной пространственной частотой получены выражения для удельного импеданса горного массива нагружающего скважину, и определены частоты радиальных резонансов кольцевого слоя жидкости между корпусом излучателя и колонной, а также частоты антирезонансов. На резонансных частотах передача энергии в массив происходит наиболее эффективно, при этом для обычных размеров (диаметров) скважины частоты первых резонансов имеют значения не ниже 10 кГц. Поэтому при применении высокочастотных генераторов имеются существенные ограничения по глубине распространения упругих колебаний в пористую среду пласта, которые связаны и с очень сильным поглощением высокочастотных волн, и с ограничением мощности подобных генераторов из-за больших электрических потерь в питающем скважинном кабеле.  [c.271]


Смотреть страницы где упоминается термин Радиальные смещения 439, 516, — колебания 449, 660, радиальных колебаний распространение : [c.372]    [c.627]   
Введение в теорию упругости для инженеров и физиков (1948) -- [ c.453 ]



ПОИСК



Радиальные колебания

Радиальные смещения 439, 516, — колебания 449, 660, радиальных

Распространение колебаний

Ток смещения



© 2025 Mash-xxl.info Реклама на сайте