Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурная турбулентность устойчивость

Винтовой водный поток характеризуется большой устойчивостью и имеет ряд структурных особенностей. Его режим (глубина, скорость) зависит от параметров винтового желоба и главным образом ют формы его образующей или поперечного сечения. Если поперечное сечение винтового желоба имеет пологий уклон, как у винтовых шлюзов, то при этом на большей части смоченного периметра режим потока близок к ламинарному. На винтовых сепараторах область турбулентного режима значительно больше ламинарной. Как известно, режим прямолинейного потока характеризуется числом Рейнольдса (при Ке > 1000 он является турбулентным, при Ке < 1000 — ламинарным). Винтовой поток в результате присущей му циркуляции имеет критическое значение числа Рейнольдса, несколько большее 1000  [c.16]


О структурных функциях турбулентности в устойчиво стратифицированной атмосфере, Изв. АН СССР, Физика атмосферы и океана, 1, № 10, 1091—1094.  [c.702]

Нет сомнений, что поиск новых концепций совершенно необходим. Уже сам факт существования сильновзаимодействующих ансамблей дефектов, наличие крупномасштабных массоперемещений и участие поворотных каналов в явлениях переноса придают кристаллу новые качества. Так, вследствие появления дисклинационных компонент в континууме дефектов резко изменяется характер их взаимодействия. Возникают эффекты дальнодействия и кривизны, изменяется асимптотика полей микронапряжений. Необходимость соблюдения условий сплошности во фрагментированных объектах приводит к самосогласованному перемещению отдельных частей кристалла, инициирует мощные повороты вещества, вызывает специфические явления локализации и делокализации деформации. При определенных обстоятельствах самосогласованное перемещение элементов среды вообще осуществляется через новые каналы массопереноса (например, за счет потери ориентационной устойчивости или возникновения турбулентностей) или необычной реакции деформируемого кристалла на внешние воздействия (когда возникает структурный отклик, охватывающий сразу большие объемы материала). Это заставляет обращаться к изучению проблемы в рамках представлений нелинейной термодинамики из-за совершенно очевидной тен-  [c.4]

Указанное явление, называемое эволюцией уровня метеорологических полей, затрудняет определение статистических характеристик таких полей. Тем не менее опыт показывает, что если ограничиться лишь наблюдениями, относящимися к определенному сезону года, времени суток и синоптическим условиям (т. е. определенной погоде ), то при осреднении по временному интервалу т, заметно превосходящему характерный период макро-структурных элементов или когерентных структур (турбулентных образований, содержащих основную долю энергии турбулентности), средние значения метеорологических полей будут относительно устойчивыми. В таком случае можно считать, что соответствующие наблюдения образуют статистический ансамбль , позволяющий производить вероятностное осреднение. В приземном слое воздуха временной масштаб макроструктурных элементов можно оценить по порядку величины как отношение где и — характерное значение скорости ветра, а о — характерный горизонтальный масштаб макроструктурных элементов, измеряющийся десятками или несколькими сотнями метров. Поэтому отношение Lo/i7 имеет порядок несколько десятков секунд, и при осреднении по интервалам времени порядка десяти—двадцати минут средние значения скорости ветра, температуры и т. д. оказываются относительно устойчивыми и могут рассматриваться как приближенные значения вероятностных средних для соответствующих случайных полей. Правда, при дальнейшем значительном увеличении периода осреднения до интервалов порядка нескольких часов или еще больших средние значения заметно меняются и могут снова стать малоустойчивыми за счет влияния длиннопериодных синоптических колебаний , относящихся к турбулентности средних масштабов, а затем и к макротурбулентности, однако такой турбулентностью мы здесь заниматься не будем.  [c.373]


Теперь изменим параметры эксперимента так, чтобы течение в трубе стало турбулентным. Вновь проведем опыт N раз в идентичных условиях, чтобы получить TV реализаций турбулентного поля скорости. Убеждаемся, что все реализации турбулентного течения различны Причина различий заключается в том, что задаваемые нами режимные параметры, неизменные от опыта к опыту, в случае турбулентного течения не полностью определяют поле скорости, поскольку турбулентное течение неустойчиво к малым возмущениям поля скорости. При течении вязкой несжимаемой жидкости с постоянными свойствами в отсзлтствие внешних массовых сил (будем рассматривать только такие течения) критерием устойчивости является число Рейнольдса. Критерий Re может быть интерпретирован как соотношение характерных значений сил инерции и вязкости. Силы инерции, связанные с перемешиванием различных объемов жидкости, движущихся с разными скоростями, способствуют образованию в потоке структурных неоднородностей, характерных для турбулентного течения. Силы вязкости, наоборот, приводят к сглаживанию неоднородностей, возмущающих плавное движение жидкости. Поэтому очевидно, что течения с достаточно малыми значениями Re будут ламинарными, а с достаточно большими — турбулентными. Этот принципиальный вывод и был сформулирован О. Рейнольдсом.  [c.134]


Смотреть страницы где упоминается термин Структурная турбулентность устойчивость : [c.182]    [c.216]    [c.359]    [c.380]   
Деформация и течение Введение в реологию (1963) -- [ c.291 ]



ПОИСК



Структурная турбулентность

Устойчивость структурная



© 2025 Mash-xxl.info Реклама на сайте