Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостная влияние радиуса изгиба

Анализ разрушений резьбовых соединений показывает, что образование усталостных трещин в шпильках с плоской впадиной резьбы начинается в точке пересечения прямолинейных участков впадины и грани витка. С увеличением радиуса впадины место зарождения усталостной трещины смещается к точке перехода скругленного и прямолинейного участков витка, что можно объяснить существенным влиянием напряжений изгиба витков.  [c.130]


Влияние среднего напряжения цикла проявляется также в изменении критического радиуса надреза, обусловливающего-возникновение нераспространяющихся усталостных трещин. Как указывалось выше, критический радиус надреза при изгибе с вращением или растяжении-сжатии по симметричному циклу нагружения можно считать постоянным, не зависящим от глубины надреза и диаметра минимального сечения. Так как критический радиус надреза соответствует равенству предельных напряжений, необходимых для возникновения трещин и для полного разрушения образца (при этом возникновение трещины определяется главным образом амплитудой напряжения, а на распространение трещины влияет максимальное растягивающее напряжение), можно предположить, что критический радиус надреза Гкр должен зависеть от среднего напряжения От. Действительно, экспериментально определенный при осевом нагружении латуни критический радиус надреза Гкр зависит от среднего напряжения цикла. Так, для средних напряжений —50,  [c.90]

Влияние концентраторов напряжений на точность ускоренных методов усталостных испытаний оценивается на шлифованных образцах с концентратором напряжений в виде кольцевого выступа с различными соотношениями диаметра и ширины концентратора, радиусного надреза с различными радиусами и V-образного надреза с различными углами профиля. Образцы испытывали на машине НУ в условиях чистого изгиба.  [c.74]

Хвостовая часть лопаток, кроме напряжений растяжения II изгиба, вызываемых центробежными силами, может испытывать большие переменные напряжения, вызываемые вибрацией, на что указывает обычно усталостный характер их разрушения. На надежность хвостовой части лопатки значительное влияние оказывают неравномерность распределения напряжений, радиусы скруглений и переходы, а также свойства материала лопаток и дисков [2], [3].  [c.102]

Экспериментальные кривые, характеризующие влияние радиуса галтели и ее формы на распределение нормальных напряжений вдоль ее поверхности в срединной плоскости кривошипа и по ширине щеки, вдоль линии ЛВ, изображены на фиг. 26, — VI II]. Как показали опыты, максимальное напряжение оказалось при модификации по фиг. 26, II, а минимальное — при модификации по фиг. 26, VI. Максимальное напряжение в последнем случае получилось в 2 раза мeньнJим, чем в перьом. Однако усталостные испытания на изгиб показали, что предел выносливости для модификации по фиг. 26, VI по сравнению с исходной модификацией (фиг. 26, II) больше только на 30%.  [c.149]


Реально, в каждом конкретном случае, действует некоторое сочетание факторов, совместное влияние которых приводит к усилению или ослаблению вероятности превращения возникшей усталостной трещины в нераспространяющуюся. При этом в различных ситуациях главное определяющее влияние могут оказывать различные факторы. Так, при изгибе с вращением цилиндрических деталей с резкими выточками главным фактором является радиус при вершине концентраторов напряжений, определяющий градиент напряжений в зоне образования усталостной трещины. При нагрун<ении знакопеременным круче-  [c.69]

Глубина концентратора напряжений не оказывает столь заметного влияния на возникновение нераспространяющихся усталостных трещин, как, например, радиус при вершине надреза. Однако при малой глубине наблюдается аномалия этого эффекта, и нераспространяющиеся трещины не возникают даже при весьма острых концентраторах напряжений. Это было показано при исследованиях углеродистых сталей двух марок, термообработанных по различным режимам для получения контрастных механических свойств I) 0,ЗГ% С ав = 548МПа От = = 315 МПа и 2) 0.54 % С ав=1050 МПа ат=1020 МПа. Испытывали на усталость при изгибе с вращением образцы с постоянным диаметром сечения в зоне концентратора напряжений, равным 5 мм, и различной глубиной самого концентратора (от 0,005 до 0,5 мм). Концентратор имел вид кольцевого надреза, радиус при вершине которого изменяли от i,u до и,01 мм. При этом надрез имел круглый профиль при r >t и V-образный профиль с углом раскрытия 60° при rтеоретические коэффициенты концентрации и градиенты напряжений приведены в табл. 7.  [c.73]

Если в циклически деформируемой детали имеется трещина, размер которой меньше предельного размера нераспространяющейся усталостной трещины, то опасность воздействия на такую деталь динамических перегрузок не превышает опасности воздействия таких же перегрузок на деталь без трещины. Влияние одиночных перегрузок ударного характера исследовали на образцах из отожженной углеродистой стали (0,36 % С 0,27% Si 0,53% Мп 0.011% Р 0,014% S СТт = 337МПа Ов = = 532 МПа 6 = 23,3 % il = 42,l %). Испытывали на усталость при изгибе с вращением консольные образцы диаметром 15 мм, имеющие кольцевой V-образный концентратор напряжений глубиной 1,5 мм, радиусом при вершине 0,35 мм и углом раскрытия 60°. Перегрузку одинаковой интенсивности (400 МПа) создавали в образцах, испытывавшихся при различных амплитудах стационарного режима (300, 250, 200 и 150 МПа) и при разных долговечностях (до возникновения усталостной трещины и при числах циклов, характерных для появления трещин разной глубины 0,1 0,2 и 0,3 мм) В результате экспериментов было установлено, что влияние однократной динамической перегрузки зависит от того, в какой момент она приложена до возникновения усталостной трещины перегрузка приводит к увеличению долговечности пепегрузка, приложенная после возникновения трещины, приводит к небольшому снижению долговечности. Наиболее опасно воздействие перегрузки, когда глубина трещины превышает критическую. Критическая глубина трещины, выше которой обнаруживается более сильное влияние перегрузки, соответствует глубине нераспространяющейся трещины для данного концентратора напряжений (рис. 55). Для исследованных образцов предельная глубина нераспространяющейся трещины составляет 0,25 мм.  [c.135]

Согласно последнему исследованию Е. М. Шевандина и его сотрудников [168] влияния концентрации напряжения на усталостную прочность стали в воздухе установлено, что с увеличением остроты надреза концентратора и ростом коэффициента концентрации напряжений как при изгибе, так и при растяжении — сжатии происходит уменьшение усталостной прочности малоуглеродистой и низколегированной сталей до экстремального значения и при дальнейшем увеличении остроты надреза усталостная прочность практически не изменяется. Наименьший радиус надреза, отвечающий достижению экстремального значения усталостной прочности, может быть назван предельным. При изгибе и растяжении — сжатии для образцов сечением 30—60 мм он имеет величину около 0,3 мм (в среднем 0,2—0,5 мм).  [c.123]


При реализации механизма замедленного разрушения поверхность разрушения приобретает межкристаллитное строение. Отчетливо выявляется характерная огранка поверхности разрушения (рис. 5.68), возникающая при распространении хрупких трещин по границам кристаллитов. Часто видны трещины уходящие в глубь металла. Такая же картина разрушения выявлена при изучении влияния водорода и приложенного напряжения на высокопрочную (а 2 = 1200 МПа) сталь 38ХНЗМФА в закаленно-отпущенном состоянии [187]. Испытания на замедленное разрушение проводили при комнатной температуре, нагружая стандартные призматические с острым надрезом (угол раскрытия 45°, радиус основания надреза р = 0,22 мм, наведенная усталостная трещина) образцы с постоянно действующим изгибающим моментом (по схеме чистого изгиба). Источником водорода служил  [c.297]


Смотреть страницы где упоминается термин Усталостная влияние радиуса изгиба : [c.88]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.481 ]



ПОИСК



Радиус влияния

Радиусы

Усталостная



© 2025 Mash-xxl.info Реклама на сайте