Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ векторный математический — Обозначения

Вероятно, Гиббс слишком хорошо понимал значение системы обозначений, когда он писал Именно сомнения относительно преимущества различных систем обозначений, удерживавшие меня ранее от каких-либо публикаций по данному предмету и удерживающие меня также сейчас от какой-либо формы окончательной публикации,. .. вызвали у меня ощущение, что в моем способе применения символов кроется какая-то неточность . Гиббс ввел точку и крест для обозначения скалярного и векторного произведений. Значение разработки векторного анализа иллюстрируется следующей характеристикой, данной самим Гиббсом Если я достиг каких-то успехов в математической физике, то это, как я думаю, произошло потому, что я смог преодолеть математические трудности ,  [c.70]


В физической газодинамике реагирующих сред широко используют математический аппарат векторного и тензорного анализа. В связи с этим целесообразно привести сводку наиболее часто употребляемых формул тензорного и векторного анализа. При записи последующих формул использованы обозначения f, g — скаляры А, В, С, D—векторы Т — тензор V — оператор Гамильтона (набла), символический вектор, выражение которого в декартовой д д д  [c.451]

Смысл введенных здесь обозначений известен из основ математического анализа. Заметим, что при интегрировании векторных функций имеют место некоторые соотношения, аналогичные известным из основ интегрального исчисления для скалярных функций. Например, существует формула ннтщ рирования по частям  [c.63]

Вычислительный аппарат векторною исчисле1П1я. Конечной целью решения практических задач, в частности, анализа или синтеза (проектирования) механизмов, является числовое, а не символическое, представление параметров механизмов, поэтому от векторных обозначений необходимо перейти к числовым предславлениям параметров. Наиболее просто векторы преобразуются к проекциям в прямоугольной декартовой системе координат, широко используемой в аналитической геометрии. Метод скалярных ортогональных проекций в сочетании с алгеброй чисел является предпочтительным математическим аппаратом векторного исчисления. Выбрав прямоугольную систему координат Оху>2, осям абсцисс, ординат и аппликат которой соответствуют орты I, j и к, представим произвольные векторы a, Ь, с и т. д. через их скалярные проекции  [c.43]


Смотреть страницы где упоминается термин Анализ векторный математический — Обозначения : [c.9]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.2 ]



ПОИСК



Анализ векторный

Векторное Обозначения

Векторные

Математический анализ — Обозначения

Обозначения математические



© 2025 Mash-xxl.info Реклама на сайте