Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение преобразования Радона

Определение преобразования Радона  [c.20]

Преобразование Радона трансформирует изображение в одномерный сигнал определенного вида, что позволяет вычислять свертку и корреляцию двух изображений [13], линейную и нелинейную фильтрации, сжатие и кодирование информации [18] в устройствах, предназначенных для обработки одномерных сигналов. Оценки показывают, что использование современных элементов оптоэлектроники (устройств, использующих поверхностные акустические волны, акустических модуляторов и т. д.) позволяет таким системам обработки изображений успешно конкурировать, с другими, аналогичными по назначению устройствами [13].  [c.14]


В основе математического аппарата томографии лежит интегральная геометрия, и в первую очередь преобразование Радона. При анализе оптических томографов мы будем широко использовать свойства этого преобразования В настоящем параграфе рассмотрим основные математические понятия интегральной геометрии, определение и свойства преобразования Радона. Мы будем следовать работам [3, 12], посвященным подробному анализу перечисленных вопросов При этом будем стараться, может быть в ущерб математической строгости, не выходить за рамки институтского курса математического анализа  [c.20]

Для определения свойств преобразования Радона используем формулу (1.5) как наиболее удобную.  [c.22]

Математическим фундаментом томографии является интегральная геометрия, основы которой были заложены в работах И. Радона (перевод его статьи см. 2]) в 1917 г., а затем в начале 60-х годов развиты в трудах И. М. Гельфанда и его школы [3]. Предмет изучения интегральной геометрии составляет преобразование функций, заданных на одних геометрических объектах, к функциям, заданным на других геометрических объектах. Например, переход от функций, определенных на плоскости, к функциям на прямых осуществляется интегрированием исходной функции по каким-либо поверхностям в области ее задания (в нашем примере— по прямым). Данное преобразование во многом напоминает проецирование, и иногда полученную функцию называют проекцией. Уже в [3] указывалось на возможное широкое практическое применение развиваемого раздела математики. Одним из таких применений впоследствии стала томография, основанная на решении обратной задачи интегральной геометрии — восстановлении многомерных функций по их интегральным характеристикам. Но методы решения некорректных обратных задач не были еще достаточно развиты. Наиболее полно они были разработаны  [c.7]

В настоящем параграфе рассматривается вопрос о выборе числа проекций для восстановления достаточно широкого класса изображений, представимых в частотной плоскости в виде ряда Котельникова, обобщенного на двумерный случай. Для этого предварительно вспомним связь между преобразованиями Фурье и Радона (см. 1.1). Согласно теореме о центральном слое одномерное преобразование фурье-проекции, полученной под определенным углом просвечивания, равно сечению двумерного спектра изображения вдоль линии, проходящей через начало координат в спектральной плоскости под тем же углом. После определения фурье-спектров от всех проекций в частотной области формируется дискретный набор сечений двумерного фурье-образа искомого изображения. Для анализа возможности последующего восстановления объекта по набору проекций необходимо определить достаточное число сечений двумерного спектра для определения его во всей области задания на частотной плоскости.  [c.54]


Пз соображении симметрии ясно, что проекции можно рассматривать только в области изменения углов 0<ф<я/4 Нетрудно заметить, что можно выделить три различные области определения проекций при фиксированном ф (рнс 1.2, прямые I, 2 и 5). Вычисляя дЛ1Ину отрезка прямой внутри области задания функции /(дс, у), можно получить значения преобразования Радона  [c.22]

Дискретизация области реконструкции изображения возможна не только на декартовой сетке. Применяются различные методы представления. На этом базируются методы восстановления томограмм, основанные на разложении в конечные ряды [23]. Наиболее широко распространены алгоритмы реконструк-цшт с использованием интегральных преобразований. Они основаны на нахождении формулы обращения, т. е. определении томограммы из проекционных данных и затем реализации ее вычисления на ЭВМ. При этом учитываются особенности схемы сбора данных, зашумленность изображения и т. д. Фактически в большинстве случаев задача сводится к построению вычислительной процедуры, реализующей методы восстановления, описанные в 1.2 (фурье-синтез, суммирование фильтрованных обратных проекций, фильтрация суммарного изображения). К этому же классу следует отнести алгоритмы, непосредственно использующие инверсное преобразование Радона.  [c.52]

Аналогичную операцию можно вьшолнить с использованием преобразования Радона. Схема сжатия при этом выглядит следующим образом. Сначала вычисляется преобразование Радона исходного изображения Цх,у) под различными, заранее выбранными углами ф. Затем из полученных проекций (р) с использованием одномерного преобразования Фурье получают функцию / <0 (V), представляющую собой набор значений двумерного фурье-образа изображения. Сжатие выполняется дискретизацией и квантованием, полученных значений коэффициентов Фурье отдельно вдоль каждой линии. Так как проекция /в р)—действительная функция, то ее фурье-преобразование ( ) обладает свойством эрмитовости, т. е. действительная часть — четная функция, мнимая— нечетная. Поэтому должна быть передана или запомнена только положительная часть (v>0) каждой линии в частотной плоскости. При сжатии вдоль каждой линии отбрасываются значения спектра после некоторой граничной частоты которая изменяется от проекции к проекции, т. е. зависит от ф. В [18] для определения значения было предложено следующее правило  [c.212]


Смотреть страницы где упоминается термин Определение преобразования Радона : [c.82]   
Смотреть главы в:

Оптическая томография  -> Определение преобразования Радона



ПОИСК



Радон

Радона преобразование



© 2025 Mash-xxl.info Реклама на сайте