Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейная акустика идеальной среды

Линейная акустика идеальной среды  [c.7]

Ограниченность и несовершенство этих двух несвязанных точек зрения на один и тот же предмет изучения особенно четко проявились в 1860 г., когда Риман отыскал точное решение одномерной системы гидродинамических уравнений для идеальной среды в виде простых волн [24]. Оказалось, что профиль сколь угодно малого, но конечного возмущения ведет себя не так, как предсказывают уравнения линейной акустики. Области сжатия движутся быстрее областей разрежения. Происходит необратимое накапливающееся нелинейное искажение профиля волны вплоть до появления неоднозначности, после чего решение становится физически бессмысленным.  [c.7]


Опыт показывает, что при малых деформациях напряжение пропорционально де( юрмации. Этот факт, установленный Гуком для простейших деформаций, составляет формулировку известного закона Гука, справедливого только для достаточно малых деформаций и напряжений. Применительно к акустике бесконечно малых амплитуд мы можем ограничиться рассмотрением идеально упругих сред, для которых связь между напряжением и деформацией линейна. Поскольку в общем случае напряжение и деформация определяются тензорами второго ранга, имеющими по шесть независимых компонент, то естественным обобщением закона Гука будет линейная зависимость между ними. Тогда обобщенный закон Гука можно сформулировать так компоненты напряжения в данной точке тела являются линейными и однородными функциями всех компонент деформации, т. е.  [c.20]

Уравнения акустики идеальной линейной малосжимаемой среды. Простые волны. С точностью до членов порядка е уравнение состояния смеси может быть представлено в виде линейной зависимости/ = СоР, система (6.6.11) упрощается и сводится к уравнениям акустики идеальной линейно сжимаемой среды  [c.65]

Во второй части книги мы рассмотрим акустические волны в твердых телах, характеризующихся различными физическими свойствами — упругой анизотропией, пьезоэффектом, наличием носителей электрического заряда, магнитоупругостью, внутренней структурой и т. д. Однако, прежде чем переходить к изучению такого рода сложных систем, естественно ознакомиться с наиболее простым случаем — классическим идеально упругим изотрот ым твердым телом (диэлектриком). Под идеально упругим будем подразумевать твердое тело, в котором отсутствуют пластические деформации. Иными словами, при снятии силовой нагрузки тело приходит в первоначальное состояние (отсутствие механического гистерезиса). Феноменологически такое тело может быть описано в рамках теории упругости — хорошо разработанного раздела механики сплошных сред (см., например, 1]). Ниже приведены основные сведения из теории упругости, необходимые для понимания дальнейшего изложения. Несмотря на то, что в настоящей главе мы ограничимся рассмотрением волн бесконечно малой амплитуды в рамках линейной акустики, Б целях методического единства здесь приведены и некоторые сведения из нелинейной теории упругости изотропных твердых тел.  [c.188]



Смотреть страницы где упоминается термин Линейная акустика идеальной среды : [c.82]    [c.34]   
Смотреть главы в:

Акустика в задачах  -> Линейная акустика идеальной среды



ПОИСК



Акустика

Неголономиое уравнение состояния пузырьковой жидкости. Коэффициенты дисперсии и диссипации (G1). Уравнения акустики идеальной линейной малосжимасмой среды. Простые волны

Среда идеальная

Уравнения акустики идеальной линейной малосжимаемой среды. Простые волны



© 2025 Mash-xxl.info Реклама на сайте