Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Топологически инвариантные свойства и топологическая структура разбиения на траектории

Другой аспект качественного исследования разбиения на траектории в целом заключается в отыскании эффективных приемов илп методов качественного исследования, т. е. эффективных методов определения топологической структуры разбиения или тех и других топологически инвариантных свойств его при заданных конкретных правых частях динамической системы ).  [c.133]

I. Топологически инвариантные свойства и топологическая структура разбиения на траектории. Перейдем теперь к основной задаче качественного исследования динамической системы — к установлению качественной картины разбиения фазовой плоскости на траектории. Рассмотрение приведенных в предыдущей главе частных примеров динамических систем приводит к мысли, что для знания качественной картины нужно знать поведение не всех траекторий, а лишь некоторых особых траекторий. Таких особых траекторий в рассмотренных примерах было конечное число, и они разбивали всю совокупность траекторий на области, в которых траектории вели себя одинаково. Особыми траекториями в этих примерах были состояния равновесия, предельные циклы и траектории, стремя-  [c.410]


Мы можем теперь перейти к уточнению понятия качественной картины фазовых траекторий или топологической структуры разбиения на траектории. Две топологические структуры разбиения фазовой плоскости на траектории, заданные двумя системами вида (6.1), называют тождественными, если существует топологическое (т. е. взаимно-однозначное и непрерывное) отображение плоскости в себя, при котором траектории одной системы отображаются в траектории другой этом траектория отображается в траекторию как при прямом, так и при обратном отображении). Это определение тождественности двух структур является косвенным определением самого понятия топологической структуры разбиения на траектории. Можно сказать, что под топологической структурой разбиения на траектории (или, что то же самое, под качественной картиной фазовых траекторий) понимают все те свойства этого разбиения, которые остаются инвариантными при всевозможных топологических отображениях плоскости в себя. Примеры таких свойств были приведены выше.  [c.412]


Смотреть главы в:

Теория колебаний  -> Топологически инвариантные свойства и топологическая структура разбиения на траектории



ПОИСК



Инвариантное свойство

Инвариантность

Инвариантный тор

Разбиение

Свойства с а-структурой

Топологически инвариантные свойства

Траектория

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте