Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разложение Ф в степенной ряд но параметру толщины или по числу

Другим предельным случаем является течение при числе Маха Моо->оо. При сколь угодно большом, но фиксированном числе Re оо параметр % также неограниченно возрастает и эффекты взаимодействия становятся наибольшими. Это — случай так называемого сильного взаимодействия, когда толщина пограничного слоя сравнима или превосходит толщину обтекаемого тела. Малым параметром, по которому обычно строится асимптотическое разложение для этого случая, является 1//, причем исходным должно служить предельное решение, полученное при М оо —ь оо на основе совместного рассмотрения течения в пограничном слое и внешнем потоке. В ряде случаев это решение оказывается автомодельным. К их числу относится задача обтекания полубесконечной пластины, а также задача обтекания тонкого тела вращения степенной формы г рассмотренная в работе В. В. Лунева (1960). В условиях силь-  [c.531]


Изучение движения вязкой жидкости в области пограничного слоя основывается, как уже упоминалось, на интегрировании уравнений пограничного слоя, представляющих уравнения Стокса, существенно упрощенные за счет принятия в расчет малости толщины пограничного слоя. Решение этих, носящих имя своего создателя Л. Прандтля ) уравнений, как будет показано в следующем параграфе, представляется первым членом разложения решения уравнения Стокса в ряд по степеням малого безразмерного параметра — отношения масштаба толщины пограничного слоя к характерному для потока в целом масштабу обтекаемого тела (например, хорде крыла) — имеющего порядок обратной величины корня квадратного из рейнольдсового числа. Этот первый член содержит малый параметр в нулевой степени, поэтому уравнения пограничного слоя можно рассматривать как нулевое приближение в асимптотическом (при больших рейнольдсовых числах) разложении болееобщих уравнений движеиия вязкой жидкости — уравнений Стокса.  [c.557]


Смотреть страницы где упоминается термин Разложение Ф в степенной ряд но параметру толщины или по числу : [c.215]   
Смотреть главы в:

Введение в аэродинамику сжимаемой жидкости  -> Разложение Ф в степенной ряд но параметру толщины или по числу



ПОИСК



Разложение сил



© 2025 Mash-xxl.info Реклама на сайте