Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные эффекты в звуковых пучках

Этот вопрос, имеющий принципиальное значение для нелинейной акустики, довольно широко обсуждался в литературе в связи с тем, что здесь были получены противоречивые результаты согласно одной теории возможность наблюдения комбинационных частот второго приближения в газах или жидкостях есть, согласно другой — нет. В настоящее время следует считать доказанным как теоретически, так и экспериментально, что в случае рассеяния одного звукового пучка на другом (при идеальной однородности пучков и пренебрежении пограничными эффектами) в газах или жидкостях комбинационного рассеяния звука на звуке во втором приближении нет. Возвращаясь К принципу суперпозиции, следует сказать, что в области пересечения звуковых пучков взаимодействие звука со звуком имеет место и в этой области могут наблюдаться комбинационные частоты второго порядка.  [c.49]


При пересечении неоднородных звуковых волн принципиально возможно перераспределение звуковых полей вне области пересечения, вызванное тем, что одна из звуковых волн прошла по среде, возмущенной другой неоднородной волной конечной амплитуды. Это перераспределение, например, вызванное стационарными вихревыми потоками рассеивающей волны, может происходить без изменения частоты (аналогично обычному рассеянию). Более характерным является рассеяние с образованием волн комбинационных частот (аналогично комбинационному рассеянию). Последний эффект является типично нелинейным. Рассмотренное в литературе рассеяние звука на звуке относится к последнему типу и его правильнее было бы называть комбинационным рассеянием звука на звуке. Как уже отмечалось, под комбинационным рассеянием звука на звуке понимается возможность наблюдения волн комбинационных частот вне области взаимодействия двух ограниченных звуковых пучков. Здесь будет рассмотрено рассеяние в недиссипативной среде без дисперсии, в которой возможна только одна скорость распространения звуковых возмущений (газы или жидкости) особенности рассеяния звука на звуке в твердых телах рассмотрены ниже в гл. 8, 3.  [c.90]

Нелинейные эффекты в звуковых пучках  [c.232]

I 3. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ В ЗВУКОВЫХ ПУЧКАХ 233  [c.233]

В последнее время в связи с исследованиями взаимодействия мощного оптического излучения с веществом была обнаружена генерация гипер-звуковых волн пучком лазера, фокусируемым в твердом теле [71]. Интенсивность этих волн настолько велика, что по оценкам работы [72] соответствующие значения Г даже при комнатных температурах близки к единице и возрастают на 3—4 порядка при понижении температур до температуры жидкого гелия, что дает основание предполагать наличие в этом случае заметных нелинейных эффектов.  [c.46]

Н. а. занимает промежуточное место между линейной теорией звука и теорией ударных волн. Предметом её исследований являются слабо нелинейные волны, в то время как ударные волны, как правило, сильно нелинейны в классич. же акустике нелинейные эффекты не рассматриваются вообще. Н. а. близка к нелинейной оптике и др. разделам физики нелинейных волн. К осн. вопросам, к-рыми занимается совр. Н. а., относятся распространение волн конечной амплитуды, звуковые пучки большой интенсивности и их самовоздей-ствие, нелинейное поглощение и взаимодействие волн, особенности нелинейного взаимодействия в твёрдых телах, генерация и распространение интенсивных шумов, усреднённые э екты в звуковом поле, акустич. кавитация и др.  [c.288]


Пз) и глицерине (4=14 Пз). Радиус звукового пучка с частотой f = 2 МГц был равен с1 = 0,75 см, поэтому согласно сказанному выше время установления тепловых эффектов с1 Г) в бензоле и глицерине равно 1,5-10 с. Для используемых в эксперименте импульсов мощностью до 50 Вт и длительностью порядка 1 с процесс был нестационарным, причем длины самофокусировок составляли 12 см в бензоле и 8 см в глицерине при зтом расстояние образования разрыва из-за квадратичной нелинейноста было значительно большим (15—20 см). Регистрация велась с помощью оптической визуализации звука, в экспериментах с глицерином использовали также гидрофон. В экспериментах наблюдалось существенное (до 2 раз) сужение пучка и даже его распад на несколько пучков (нитей) что соответствует описанному выше эффекту самофокусировочной не устойчивоста.  [c.190]

Распространение лазерного излучения в средах с дискретными центрами теплопереноса в среду сопровождается акустогидроди-намическими явлениями, вызываюш,ими стохастизацию среды и соответственно процессы нелинейного светорассеяния и самофокусировки пучка [30, 32]. С другой стороны, лазерная генерация акустического излучения может представлять самостоятельный интерес в приложении к проблеме зондирования. Действительно, оптико-акустические эффекты несут информацию как об источнике лазерного излучения, так и о поглощающей излучение газовой и дисперсной среде. Кроме того, искусственно созданный лазерным лучом выносной источник звуковой энергии может быть использован в традиционных, схемах акустического зондирования, например, таких, как излучатель — приемник для определения спектрально-акустических и метеорологических характеристик нижнего километрового слоя атмосферы.  [c.200]

Обращение волнового фронта [32, 46]. Уже в первых экспериментах по вынужденному рассеянию электромагнитных волн на создаваемой ими звуковой решетке (условие синхронизма шо = W + ко = кс -Ь q, где LJo, ко и Шс, кс — соответственно частота и волновое число падающей и рассеянной электромагнитных волн, а О, q— частота и волновое число акустической волны) было замечено, что при выходе из области нелинейного взаимодействия рассеянный назад волновой пучок примерно повторяет эволюцию пучка падающей волны-накачки. Затем выяснилось, что во многих экспериментальных ситуациях рассеянная волна точно воспроизводит комплексно-сопряженную падающую волну, сильно промодулированную в поперечном направлении [3]. Повторение рассеянной назад волной того же оптического пути, который прошла накачка по неоднородной (в общем случае случайной) среде, но в обратном направлении, означает, что область нелинейного взаимодействия работает как эффективное зеркало. Но зеркало очень необычное отраженная назад волна повторяет оптический путь падающей волны, лишь когда ее фазовый фронт оказывается комплексно-сопряженным с фазовым фронтом накачки ас( ) do r). При этом полная фаза квазигармонической волны iiut — ikx + iip) при распространении в ж-направлении меняется, как у падающей при обратном ходе времени. Именно поэтому эффекты воспроизведения поперечной модуляции пучка падающей волны в излучении, идущем из области нелинейного взаимодействия, получили название обращение волнового фронта .  [c.428]


Смотреть страницы где упоминается термин Нелинейные эффекты в звуковых пучках : [c.223]   
Смотреть главы в:

Теоретические основы нелинейной акустики  -> Нелинейные эффекты в звуковых пучках



ПОИСК



Нелинейные звуковые пучки

Пуйе

Пучок сил



© 2025 Mash-xxl.info Реклама на сайте