Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие об энтропии и ее изменение в термодинамических процессах

При изложении основ термодинамики главное внимание уделено первому закону термодинамики и его приложению к аналитическому и графическому расчетам термодинамических процессов в идеальном газе. При этом дается термодинамическая трактовка понятия энтропии как функции, характеризующей изменение состояния системы при равновесной передаче теплоты, что позволяет рассматривать термодинамические процессы одновременно в ри- и Гх-диаграммах. В дальнейшем, при изложении второго закона термодинамики, поясняется значение энтропии как величины, характеризующей направление протекания неравновесных процессов.  [c.3]


Понятие об энтропии и ее изменение в термодинамических процессах  [c.39]

Статистическое рассмотрение различных процессов, происходящих в замкнутой системе, лишает понятие необратимости того абсолютного значения, которое оно получило в феноменологической термодинамике. Всякий действительный процесс, происходящий, например, в изолированной системе, является в принципе и необратимым, и обратимым, поскольку он может сопровождаться как возрастанием энтропии, так и уменьшением или сохранением ее на постоянном уровне, т. е. может быть обращен в любом направлении. Такой обращающийся характер. действительных процессов основывается на строгой обратимости элементарных молекулярных, внутримолекулярных и внутриатомных двия ений. Однако вероятность обращения действительного процесса, т. е. вероятность того, что процесс изменения состояния изолированной системы пойдет не в сторону возрастания энтропии, а в сторону уменьшения ее, крайне мала. Поэтому, если процессы, противоречащие принципу необратимости, и встречаются в природе, то настолько редко и в таком ничтожном масштабе, что нисколько не лишают силы термодинамическую трактовку второго, начала термодинамики и не обесценивают ее значения.  [c.95]

Понятие об изотермных потенциалах. Изменением энтропии процесса можно характеризовать направление его развития и условия термодинамического равновесия. Однако при исследовании химически реагирующих систем вместо энтропии удобнее пользоваться другими характеристическими функциями. Они избавляют от необходимости при определении направления протекания процесса и условий равновесия рассматривать окружающую среду.  [c.171]

Первое положение второго начала указывает на невозможность с помощью замкнутого кругового процесса превратить теплоту в работу без компенсации. Понятие компенсации, как видно из его определения, содержит отдачу части теплоты рабочим телом другим телам и изменение термодинамического состояния этих других тел при превращении теплоты в работу в замкнутом круговом процессе. В случае обычных, наиболее распространенных систем О ба эти элемента компенсации совпадают, так как отдача части теплоты рабочим телом другим телам при. круговом процессе в этом случае безвозвратна и автоматически влечет изменение термодинамического состояния этих других тел. В случае спиновых систем эти элементы компенсации не совпадают, вследствие чего с помощью спиновых систем теплоту какого-либо тела можно цели.ком превратить в работу с помощью кругового процесса без изменения термодинамического состояния других. тел. Однако такое превращение, как и в случае 0 быч1ных систем, обязательно сопровождается отдачей части теплоты рабочим телом другим телам. Эта общая закономерность (общий элемент компенсации) превращения теплоты в работу лриводит к существованию энтропии как у обычных, так и необычных равновесных систем.  [c.43]


Можно еще более обобщить понятие энтропии — распространить его на более сложные термодинамические процессы, в которых наряду с рассеянием тепла происходят выравнивание мас сосодержания и изменение структуры вещества молекулярной, атомной и электронной. Используем для этого уравнение теплообмена в форме  [c.66]

В настоящей главе читатель получил представление об одном из наиболее трудных понятий классической термодинамики равновесных процессов, а именно об энтропии как одной из термодинамических характеристик системы. Установив, что ключом к энтропии как характеристики является первая теорема об обратимой работе (разд. 10.4), с ее помощью мы показали, что если в бесконечно малом внутренне обратимом процессе в систему, находящуюся при температуре Т, поступает количество тепла (dQr) revj ТО В6" личина ( Qr/7 )rev будет одинаковой для всех внутренне обратимых переходов между заданными начальным и конечным устойчивыми состояниями. Следовательно, эта величина соответствует изменению некоторой характеристики системы, т. е. изменению энтропии dS. Затем мы обсудили вопрос о том, имеет ли смысл изменение энтропии системы, если ее состояние изменяется в результате необратимого процесса. При этом было установлено, что для идентифицируемых начального и конечного устойчивых состояний вычисление изменения энтропии в процессе необратимого перехода вполне осмысленно, и его следует проводить путем использования альтернативного обратимого процесса перехода между теми же состояниями.  [c.185]

Если допустить еще, что газ находится в полном термодинамическом равновесии, Т = onst, то соотношение (8) можно рассматривать как элементарный процесс вариации параметров газа при их очень медленном изменении, когда термодинамическое равновесие не нарушается. Именно для таких процессов и вводится понятие энтропии S с помощью соотношения  [c.22]


Смотреть страницы где упоминается термин Понятие об энтропии и ее изменение в термодинамических процессах : [c.60]    [c.49]    [c.98]   
Смотреть главы в:

Основы термодинамики и теплотехники  -> Понятие об энтропии и ее изменение в термодинамических процессах



ПОИСК



Изменение энтропии в процессах

Понятие о термодинамическом процессе

Понятие об энтропии

Процессы термодинамические

Энтропии в процессах

Энтропии изменение

Энтропия

Энтропия термодинамическая



© 2025 Mash-xxl.info Реклама на сайте