Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изучение интегральных уравнений внешних задач

Изучение интегральных уравнений внешних задач. Для доказательства теорем существования решений внешних задач термоупругости предварительно изучим подробнее интегральные уравнения этих задач.  [c.388]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]


Далее рассматриваются работы, посвященные колебаниям прямоугольных двусвязных либо многосвязных пластинок. Внутренний контур таких пластинок имел форму прямоугольника или круга. Изложенные авторами исследования осуществлялись либо численными, либо аналитическими методами. В некоторых работах результаты, полученные различными методами, сопоставляются между собой. Одна из статей сборника, выполненная Линном и Кумбасаром, посвящена изучению собственных частот колебаний шарнирно опертых прямоугольных пластинок с узкими трещинами, параллельными внешнему контуру. Для осуществления исследования пластинка разбивалась на две части вдоль линии трещины. Используя в полученных пластинках для представления перемещений функции Грина и возвращаясь затем к исходной непрерывной пластинке, авторы показали, что уравнение собственных частот колебаний является задачей на собственные значения, описываемой интегральным уравнением Фредгольма первого рода.  [c.5]


Смотреть главы в:

Трехмерные задачи математической теории упругости и термоупругости Изд2  -> Изучение интегральных уравнений внешних задач



ПОИСК



Задача внешняя

Задачи изучения ЗМС

ИЗУЧЕНИЕ СИЛ

Уравнение задачи (А) интегрально

Уравнение задачи (А) интегрально Si) интегральное

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте