Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы о равновесии системы материальных точек

Общие теоремы о равновесии системы материальных точек. Пусть связи, наложенные на систему материальны.к точек, допускают поступательное перемещение всей системы материальных точек вдоль некоторой неподвижной оси, которую всегда можно принять за ось х. Для этого возможного перемещения будем иметь  [c.180]

Теорема Лагранжа о равновесии системы. Принцип возможных перемещений, предложенный Лагранжем, дает необходимые и достаточные условия равновесия системы материальных точек, стесненной идеальными связями, не зависящими явно от времени. Принцип этот заключается в том, что при равновесии системы материальных точек сумма работ всех сил, действующих на систему, на любом возможном перемещении неположительна и всегда равна нулю на всех неосвобождающих перемещениях системы. Впервые без доказательства принцип был сформулирован И. Бернулли в письме к Вариньону, который и поместил его в своей Nouvelle Me anique . Первое наглядное и достаточно общее доказательство, основанное на применении блоков, было предложено Лагранжем. Лагранж представил приложенные к системе силы в виде натяжений нитей, перекинутых через блоки и снабженных грузами. Приведем здесь другое аналитическое доказательство теоремы Лагранжа.  [c.160]


В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]

Принцип Длламбера. Результат, полученный в предыдущем пункте, в какой-либо из трех своих эквивалентных форм носит название принципа Даламбера ) название принцип находит свое оправдание в характере интуитивной очевидности, которой обладает это положение механики. С чисто математической стороны этот принцип, по сравнению с постулатами и общими теоремами, уже ранее установленными, не дает чего-либо нового, так как по существу он сводится к номинальному истолкованию основных уравнений (8). Но с теоретической точки зрения и для исследования механических задач принцип Даламбера представляет значительный интерес, поскольку он позволяет свести постановку какого угодно динамического вопроса к статическому вопросу. Составление уравнений движения материальной системы для какой-либо динамической задачи при помощи принципа Даламбера сводится к составлению уравнений равновесия соответствующей статической задачи.  [c.267]


Смотреть страницы где упоминается термин Общие теоремы о равновесии системы материальных точек : [c.12]    [c.2]   
Смотреть главы в:

Курс теоретической механики Издание 2  -> Общие теоремы о равновесии системы материальных точек



ПОИСК



Материальная

Общие теоремы

Равновесие материальных тел

Равновесие системы материальных точек

Равновесие системы тел

Равновесие точки

Система материальная

Система материальных точек

Система точек

Теорема системы

Точка материальная



© 2025 Mash-xxl.info Реклама на сайте