Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система сходящихся скользящих векторов

Естественным методом приближенного решения задач об управлении системами с распределенными параметрами является замена соответствующих функциональных уравнений подходящими конечномерными разностными схемами. В результате получается задача об оптимальном управлении аппроксимирующей системой, описываемой уравнениями в конечных разностях или системой обыкновенных дифференциальных уравнений. Такие аппроксимирующие задачи, по крайней мере, если речь идет о линейных системах, оказываются эффективно разрешимыми, и тем самым доставляется возможность численного решения исходной проблемы. К сожалению, и здесь вопросы обоснования подобной конечноразностной аппроксимации исследованы еще недостаточно. Следует, наконец, отметить одно существенное обстоятельство, характерное для аппроксимации задач об управлении системами с распределенными параметрами и проявляющееся, в частности, уже в задачах об управлении системами с последействием. Пусть, например, речь идет об оптимальном программном управлении, обеспечивающем предельное быстродействие для бёсконечномерной системы при ограничении [[ м [<Л , и пусть эта система, аппроксимируется конечномерной системой, описываемой системой из п обыкновенных дифференциальных уравнений. В большинстве случаев для конечномерных систем условие максимума, фигурирующее в принципе максимума, не вырождается, т. е.- соответствующее выражение Н [ , X ), "ф, м] зависит фактически от и, и тем самым доставляется достаточная информация о значениях ( ). Вследствие этого невырожденного условия максимума оказывается, как правило, что эти значения лежат на границе области 7 ( гг [[<Л ), и их можно найти, зная вектор Ь). Далее, оказывается, однако, что если даже и устанавливается сходимость аппроксимирующих управлений м ( ) к оптимальному управлению и Ь) исходной системы при г -> оо, то в весьма широких случаях эта сходимость имеет достаточно нерегулярный характер и, в частности, аппроксимирующие оптимальные движения сходятся к оптимальному движению исходной системы подчас лишь как к скользящему режиму (хотя весьма нередки случаи, когда на деле этот предельный режим может осуществляться обыкновенным управлением и ( ), регуляризирую-щим, следовательно, данный скользящий режим). На языке принципа максимума это выражается в том, что соотношение, определяющее u (t) из условия максимума, при п оо вырождается (в пределе оно оказывается уже не зависящим от и) и его формальная запись для соответствующей исходной системы с распределенными параметрами имеет лишь относительное значение, поскольку оно не доставляет необходимую инфор-  [c.241]



Смотреть главы в:

Курс теоретической механики Издание 2  -> Система сходящихся скользящих векторов



ПОИСК



Вектор скользящий

Вектор скользящих векторов

Д скользящее

Система векторов

Система векторов сходящихся

Система сил сходящихся

Система скользящих векторов



© 2025 Mash-xxl.info Реклама на сайте