Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение напряжений по поверхности эллипсоида

Контактные напряжения определяют методами теории упругости при следующих допущениях а) в зоне контакта возникают только упругие деформации б) линейные размеры площадки контакта малы по сравнению с радиусами кривизны соприкасающихся поверхностей в) силы давления, распределенные по поверхности контакта, нормальны к этим поверхностям. При этих допущениях контур поверхности контакта в общем случае представляет собой эллипс, давления по площадке контакта распределяются по закону поверхности эллипсоида, а максимальное давление действует в центре площадки контакта (рис. 179, а).  [c.212]


Распределение напряжений по поверхности эллипсоида.  [c.286]

Здесь а р — среднее напряжение на поверхности контакта. Распределение напряжений по поверхности контакта может быть принято происходящим по закону эллипсоида, поэтому соотношение между максимальным  [c.234]

Эллиптические днища. Для эллиптических днищ меридиональную кривую вьшолняют по полуэллипсу (рис. 41). У края днища поверхность эллипсоида переходит в цилиндрический борт высотой 1. Эллиптические днища преимущественно применяют в аппаратуре, так как по форме они более выгодны в прочностном отношении, чем коробовые днища. Это объясняется тем, что распределение напряжений в них более равномерное вследствие посте-66  [c.66]

Распределение внешней сипы по площадке контакта. Закон распределения давлений на площадке контакта имеет решающее значение для определения напряжений, размеров площадки контакта и сближений (деформаций) контактирующих тел. Для начального точечного касания нормальная сила F распределена по площадке контакта в виде эпюры давлений, представляющей полуэллип-соид (в частном случае - полусферу). Максимальное значение ро давление имеет в центре площадки контакта (см. рис. 2.14, а). Давление р, МПа, в любой точке эллиптической площадки контакта с координатами х, у может быть найдено из уравнения поверхности эллипсоида  [c.168]

До сих пор при теоретическом анализе процессов коалесценции газовых пузырьков в жидкости предполагалось, что на газожидкостную систему не действуют внешние поля. Известно, что наложение внешнего электрического поля на рассматриваемую дисперсную систему приводит к увеличению вероятности коалесценции пузырьков определенных размеров и, следовательно, к существенному изменению распределения пузырьков газа по размерам в жидкости. Прежде чем перейти к постановке и рещению задачи об определении функции распределения пузырьков газа по размерам п V, t), обсудим вопрос о влиянии электрического поля на коалесценцию. Как известно, слияние пузырьков газа может произойти только при их столкновении. Однако не каждое столкновение является аффективным, т. е. не при каждом столкновении пузырьки коалесцируют. Эффективность коалесценции пузырьков определяется главным образом свойствами их поверхности. Поскольку точно учесть влияние свойств поверхности пузырька на эффективность коалесценции практически невозможно, используют усредненный коэффициент вероятности слияния двух пузырьков газа X. При х = 1 (случай, рассмотренный в предыдущем разделе) коалесценцию обычно называют быстрой, при х 1 — медленной. В разд. 4.4 показано, что при определенном значении напряженности электрического поля , j, деформированные полем пузырьки, имеющие в первом приближении форму эллипсоидов, начинают распадаться на более мелкие пузырьки. С другой стороны, при Е злектрическое поле увеличивает вероятность  [c.158]


Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]


Смотреть страницы где упоминается термин Распределение напряжений по поверхности эллипсоида : [c.277]   
Смотреть главы в:

Теория упругости  -> Распределение напряжений по поверхности эллипсоида

Теория упругости  -> Распределение напряжений по поверхности эллипсоида



ПОИСК



Н распределенные по поверхности

Напряжение поверхность напряжения

Поверхность напряжений

Распределение напряжений

Распределение напряжений в данной точке. Поверхность напряжений Коши инварианты тензора Напряжений. Эллипсоид Ламе

Эллипсоид

Эллипсоид напряжени

Эллипсоид напряжений

Эллипсоиды — Поверхность



© 2025 Mash-xxl.info Реклама на сайте