Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пути к увеличению конструкционной прочности

При использовании графита в качестве конструкционного материала особое внимание должно быть обращено на возможность его окисления. Графит начинает окисляться на воздухе при / = 520 -560°С, в атмосфере водяного пара при / = 700° С, а в атмосфере СО2 при 900° С. С увеличением температуры скорость окисления увеличивается. Ядерное излучение высокой интенсивности также способствует повышению скорости окисления графита. Для защиты графита ог окисления применяется ряд мер. Прежде всего, поскольку пористость увеличивает скорость окисления, стремятся закрыть поры. Большое распространение получили методы поверхностного и объемного уплотнения графита путем осаждения углерода из газовой фазы (13]. Одновременно этот способ защиты графита существенно повышает его механическую прочность. Хорошие результаты дают покрытия из карбидов различных металлов. Технология защитных покрытий на графите в настоящее время отработана.  [c.72]


Прочность чугунных отливок неразрывно связана с их конструкцией. Увеличение конструкционной прочности деталей может быть получено, в частности, путем создания плавных переходов (закруглений), повышения радиуса галтелей, правильного соотношения толщин стенО К и т. д.  [c.181]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]


В технологическом и структурном воздействиях на материал заложены огромные возможности повышения конструкционной прочности, например, увеличение способности материала к поглощению энергии путем ускорения и облегчения микрорелаксации напряжений уменьшение внутренних растягивающих напряжений путем исключения источников этих напряжений и многое другое. До 1930 г. усилия по реализации этих возможностей были направлены почти исключительно на получение высоких пределов прочности и текучести, иногда ударной вязкости и предела выносливости гладкого образца, и уже к 1940 г. были разработаны стали с Ов = 200 кг /мм , алюминиевые сплавы с Ов = 60 кгс/мм , с достаточной величиной ударной вязкости, но,  [c.7]

Увеличение ресурса ДУ и носителя в целом. Ресурс работы ЖРД повышают путем применения конструкционных материалов с большей жаропрочностью и усталостной прочностью, использования высокоэффективных термозащитных покрытий и т.д.  [c.411]

Увеличение содержания углерода в низкоотнущен-ных сталях приводит к прямому повышению уровня прочности при этом ухудшаются все характеристик стали, которыми можно оценить ее сопротивление хрупко разрушению на воздухе и в различных средах. Наиболее широкое применение среди высокопрочных сталей находят стали, содержащие около 0,30% С, обрабатываемые на 0в— 1,65 1,85 (,1 65- -185 кГ мм ) с рядом ограничений достаточно широко применяют стали, содержащие около 0,40% С, с ав <1,9 2, Гн/м (190- 210 кГ1мм ). Этот уровень прочности, по-видимому, является пока предельным для конструкционных среднелегированных сталей, не подвергаемых дополнительному упрочнению путем пластической деформации. При отсутствии значительных концентраторов напряжений высокопрочные стали обладают достаточной пластичностью (рис. 1).  [c.10]


Смотреть страницы где упоминается термин Пути к увеличению конструкционной прочности : [c.295]    [c.239]    [c.387]    [c.72]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 2 Том 4  -> Пути к увеличению конструкционной прочности



ПОИСК



Конструкционная прочность

Увеличение



© 2025 Mash-xxl.info Реклама на сайте