Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкостное трение в подшипниках скольжения и их смазка

Жидкостное трение в подшипниках скольжения и их смазка  [c.347]

Скольжение при вращательном движении. В машиностроении очень широко распространено вращательное движение деталей и связанное с ним трение скольжения при вращении. Примером такого трения может служить трение вала в подшипнике скольжения. Теоретически вращающийся вал не должен непосредственно соприкасаться с подшипниками, т. е. должна быть обеспечена гидродинамическая смазка (жидкостное трение). Фактором, благоприятствующим жидкостному трению в подшипниках скольжения, является насосное действие быстро вращающихся валов, обусловливающее очень высокЬе давление смазки в подшипнике. Поэтому для надежной работы подшипника очень важно не снизить насосное действие вала неправильным расположением масляных канавок или их выполнением (острые кромки соскабливают масляную пленку). Влияние вязкости масла на работу подшипников скольжения в сравнении с влиянием подъемной силы масляного клина очень мало. Это мнение в последнее время начало широко распространяться среди автомобилистов. Теперь в качестве смазочных масел для автомобильных двигателей вместо высоковязких масел 5АЕ 50 и 5АЕ 40 применяют менее вязкие масла 5АЕ 30 и ЗЛЕ 20. Все чаще переходят на использование еще менее вязкого масла ЗЛЕ 10 Этим достигается значительное снижение потерь на трение и, следовательно, улучшается экономичность двигателей.  [c.193]


Общие положения. При выборе смазочных. материалов для узлов трення и консервации изделий руководствуются рассмотренными характеристиками. При этом должны тщательно анализироваться и учитываться условия их использования. При выборе жидких масел следует стремиться максимально приблизиться к условиям жидкостного трения согласно формуле (68). Предварительный подбор смазочных материалов и режимов смазки для типовых узлов трения (подшипников скольжения и качения, плоских поверхностей скольжения, зубчатых и червячных редукторов, открытых зубчатых передач, зубчатых муфт, цепных передач, ходовых винтов, стальных канатов и др.) проводят по формулам, таблицам и диаграммам, приведенным в специальных справочниках [62]. Но расчетным путем трудно полностью учесть влияние режимов работы (нагрузки, скорости, температуры и др.), технического состояния машины и фактических условий ее эксплуатации (окружающая среда, коэффициент загрузки и т. д.). Поэтому подобранные по справочникам режимы смазки нужно откорректировать с учетом экспериментальных данных или эксплуатационного опыта.  [c.104]

Общий недостаток втулочных подшипников — невозможность восстановления их износа в процессе эксплуа-. тации. Во вкладышах это устраняется удалением регулировочных прокладок, устанавливаемых заранее в разъеме между их торцами. Нормальная работа подшипников скольжения возможна только при постоянной подаче смазки к трущимся поверхностям и сохранении между ними масляного слоя. Метод смазки подшипника зависит от давления на трущихся поверхностях и скорости скольжения. Лучшие условия смазки создаются при жидкостном трении, когда между трущимися поверхностями находится постоянный слой смазки. Практически этого достигнуть очень трудно, а поэтому детали, как правило, работают в условиях полужидкостной и граничной смазки, с периодическим касанием трущихся поверхностей, что приводит к их износу.  [c.37]

Но они имеют и некоторые преимущества бесшумны, заменяются без снятия муфт, для больших диаметров обходятся дешевле, в условиях жидкостного трения подшипники скольжения имеют ничтожный износ и потери иа трение в них весьма малы. Поэтому применение их целесообразно в быстроходных передачах, работающих длительное время без перерыва, например п турбинных редукторах. Расчет и конструирование подшипников жидкостного трения производятся на основе гидродинамической теории смазки, излагаемой в специальных главах курса деталей магнии (см., например, [6] или [П I) здесь этот расчет не приводится.  [c.183]

Сопротивление относительному движению, возникающее при сухом трении скольжения, является результатом механического зацепления мельчайших неровностей соприкасающихся поверхностей и их молекулярного взаимодействия. При жидкостном трении тончайшие слои смазки прилипают к поверхностям звеньев и относительное скольжение их сопровождается только внутренним трением жидкости, которое во много раз меньше сопротивления при сухом трении. Наиболее благоприятным является жидкостное трение, при котором затрата энергии на преодоление сопротивления, а также износ элементов опоры будут минимальными. В качестве иллюстрации на рис. 23.3 приведен график изменения коэффициента трения подшипника от угловой скорости вращения вала со при различных режимах трения а — подшипник б — цапфа в — клиновой зазор, заполненный смазкой). Участок 1—2 кривой соответствует сухому и граничному трению, затем с возрастанием скорости наступает полужидкостное трение (участок 2—<3), и, наконец, при достижении угловой скорости со сод (участок 3—4) устанавливается жидкостное трение, при котором коэффициент трения составляет 0,01—0,001.  [c.405]


Недостаточная надежность при высоких окружных скоростях и динамических нагрузках. При правильной конструкции и качественном исполнении подшипникового узла и при удовлетворительных условиях эксплуатации подшипники качения выходят из строя главным образом вследствие выкрашивания тел и поверхностей качения колец, которое является завершением процесса изнашивания. Между тем подшипники скольжения в фазе трения при жидкостной смазке при соответствующих условиях могут работать неограниченно долго. Поэтому в паровых турбинах, турбогенераторах, мощных скоростных зубчатых передачах, крупных центробежных и осевых насосах и других машинах, предназначенных для весьма длительного срока службы при высоких скоростях, опорами их валов служат гидродинамические подшипники скольжения.  [c.332]

Износ детали или сопряженной пары нередко характеризуется несколькими показателями. Важно выявить наиболее существенный из них по воздействию на работоспособность. На работу подшипника скольжения влияет не только увеличение зазора. Эллиптичность и другие искажения формы деталей в поперечных сечениях изменяют соотношение между кривизной соприкасающихся поверхностей, поэтому возможности реализации трения при жидкостной смазке становятся иными. Если с помощью гидродинамической теории смазки не представляет особого труда решить задачу о допустимом предельном зазоре в подшипнике при геометрически правильных поверхностях деталей, то расчет допустимых искажений формы представляет весьма сложную задачу. Надо прибегать к стендовым испытаниям, сочетая их с теоретической разработкой той или иной степени приближения.  [c.379]

По сравнению с подшипниками качения подшипники скольжения обладают рядом ценных свойств при соответствующем подборе материалов и смазки они работоспособны в широком температурном диапазоне и в химически активной среде в условиях жидкостного трения долговечны, смазочный слой оказывает весьма малое сопротивление вращению вала, а при возникновении вибраций способен гасить их, что очень важно для машин с быстровращающимся ротором.  [c.375]

Износостойкость - свойство деталей в течение заданного срока службы сохранять работоспособность. При износе деталей возможно снижение их прочности вследствие уменьшения сечений и увеличения динамических нагрузок, а также возможно полное истирание (например, рабочих органов землеройных машин) и возрастание шума (в быстроходных транспортных и технологических машинах). Износостойкость деталей обеспечивается повышением твердости, класса чистоты, защитой от загрязнения и подводом смазки к трущимся поверхностям. Износостойкость подшипников скольжения резко повышается, если обеспечен режим жидкостного трения.  [c.334]

Самый благоприятный режим работы подшипника скольжения — при жидкостном трении, которое обеспечивает износостойкость, сопротивление заеданию вала и высокий к. п. д. подшипника. Для создания этого трения в масляном слое должно быть гидродинамическое (создаваемое вращением вала) или гидростатическое (от насоса) избыточное давление. Для получения жидкостного трения обычно применяют подшипники с гидродинамической смазкой, сущность которой в следующем. Вал при вращении под действием внешних сил занимает в подшипнике эксцентричное положение (рис. 17.1, я) и увлекает масло в зазор между ним и подшипником. В образовавшемся масляном клине создается гидродинамическое давление, обеспечивающее в подшипнике жидкостное трение. Эпюра распределения гидродинамического давления в подшипнике по окружности показана на рис. 17.1, а, по длине — на рис. 17.1,6. Так как конструкция подшипников с гидростатическим давлением сложнее конструкции подшипников с гидродинамическим давлением, то их применяют преимущественно для тяжелых тихоходных валов и других деталей и узлов машин (например, тяжелых шаровых мельниц, больших телескопов и т. п.).  [c.289]

Трение и смазка подшипников скольжения. Трение определяет износ и нагрев подшипника, а также его кпд. Для уменьшения трения подшипники скольжения смазывают специальными смазочными материалами. Различают сухое трение, характеризующееся отсутствием смазки между трущимися поверхностями, работа при сухом трении вызывает интенсивный износ и заедание трущихся поверхностей, коэффициент трения /=0,1. ..0,3 полусухое трение, когда смаз поступает к трущимся поверхностям не- равномерно и в недостаточном количестве, так как при этом виде трения поверхности шипа и подшипника соприкасаются, происходит их износ, коэффициент трения / = 0,1. .. 0,25 полужидкостное трение возникает при очень тонком слое смазки между трущимися поверхностями, легко нарушаемом неровностями этих поверхностей. При разрыве масляной пленки возникает непосредственный контакт металла с металлом, вызывающий износ, коэффициент трения/=0,005... 0,10 жидкостное трение, характеризующееся наличием между трущимися поверхностями достаточного слоя смазки (2. ..70 мкм), который исключает контакт трущихся поверхностей. Одна часть слоя смазки прилипает к поверхности щипа, а вторая — к поверхности подшипника, при этом трение происходит между этими слоями, что почти полностью исключает износ деталей. Жидкостное трение дает небольшие потери на трение, так как коэффициент трения / = 0,001. ..0,005.  [c.96]


Кольца подшипников качения — цельные неразъемные, это делает их непригодными в некоторых случаях по условиям монтажа. Однако особого предпочтения подшипникам скольжения отдать нельзя. Почему В результате непосредственного контактирования отдельных участков поверхностей вала и опоры изнашивается шейка вала, что в конечном итоге ведет к заме е не только втулки, но и вала. Подшипники качения исключают износ вала. Для обеспечения жидкостного трения опоры скольжения требуют иногда весьма сложных по конструкции смазочных устройств и постоянного ухода. Подшипники скольжения по сравнению с подшипниками качения имеют повышенный расход смазки. Смазка к подшипникам скольжения должна поступать непрерывно. Перерыв в смазке ведет к быстрому нагреву и заклиниванию подшипникового узла.  [c.323]

Применение подшипников качения позволило заменить трение скольжения трением качения. Трение качения существенно меньше зависит от смазки. Условный коэффициент трения качения мал и близок к коэффициенту жидкостного трения в подшипниках скольжения (/ >0,0015...0,006). При этом упрощаются система смазки и обслуживания подшипника, уменьшается возможность разрушения при краткрвременных перебоях в смазке (например, в периоды пусков, резких изменений нагрузок и скоростей). Конструкция под шинников качения позволяет изготовлять их в массовых количествах как стандартную продукцию, что значительно снижает стоимость производства. Отмеченные основные качества подшипников качения обеспечили им широкое распространение. Производство подшипников качения ведущими промышленными странами исчисляется сотнями миллионов штук в год.  [c.348]

Обеспечение благоприятных условий трения а) создание благоприятного вида трения по характеру движения, например обеспечение чистого трения качения вместо трения качения с проскальзыванием или вместо трения скольжения б) создание благоприятного вида трения по наличию смазки, например обеспечение жидкостного трения вместо граничного или граничного вместо трения без смазки в) замена внешнего трения внутренним г) защита сопряжения от вредного воздействия среды (абразивной, химически активной и пр.). Теоретические основы этих методов рассмотрены выше. Применительно к узлам трения ПТМ их реализуют по следующим направлениям 1) уменьшение отклонений истинного направления качения катков, колес, роликов, бегунков и других опор качения от направления нх поступательного перемещения (уменьшение перекосов) с целью обеспечения трения качения вместо качения с проскальзыванием 2) замена открытых зубчатых передач закрытыми 3) обеспечение достаточной смазки и эффективной защиты от абразивного загряз-ненняузловтрения типа зубчатых и червячных передач, подшипников скольжения и качения, шарнирных соединений, опорно-поворотных устройств и др. 4) применение смазки для открытых и полузакрытых узлов трения типа шарниров тяговых и привод-  [c.93]

С увеличением скорости скольжения коэффициент трения быстро уменьшается (участок 1—2), при этом трение переходит в полужид-костное, характеризующееся тем, что поверхности скольжения еще не полностью разде /ены слоем смазки, так что выступы неровностей соприкасаются. В точке 2 начинается участок 2—3 жидкостного трения толщина смазочного слоя возрастает от минимальной, достаточной лишь для покрытия всех выступов, до избыточной, перекрывающей все неровности с запасом. При жидкостном трении рабочие поверхности полностью отделены друг от друга, и сопротивление относительному движению их обусловлено не внешним трением контактирующих элементов, а внутренними силами вязкой жидкости. Теоретически наилучшие условия работы подшипника обеспечиваются в точке 2 — здесь сопротивление движению и соответствующее тепловьще-ление наименьшие, но нет запаса толщины слоя поэтому практически оптимальные условия будут в зоне справа от точки 2. Расчет подшипника, работающего в режиме жидкостного трения, выполняется на основе гидродинамической теории смазки. Однако такой режим может быть осуществлен лишь при достаточно большом значении характеристики режима к > Якр, где — значение характеристики режима в точке 2. Для опор тихоходных валов это условие в большинстве случаев не выполняется, а для быстроходных оно нарушается в периоды пуска и останова, когда частота вращения вала мала.  [c.244]

Различают следующие виды трения скольжения сухое (работа без смазки), которое в нормально работающих подшипниках не встречается полусухое или граничное, которое имеет место при малой скорости скольжения, иеустановившемся режиме работы и при недостаточной сма,зке. В зависимости от материала трущейся пары и условий работы коэффициент трения / и 0,1...0,25 нолужидкостное, при котором большая часть поверхностей цапфы и вкладыша разделены слоем смазки, но отдельные элементы поверхностей соприкасаются, / я 0,01...0,1 жидкостное, когда смазка полностью отделяет поверхность цапфы и вкладыша и их непосредственный контакт исключается, 0,001...0,01. В таких условиях работают точно 1.зготовленные подшипникн при относительно небольших нагрузках и высоких скоростях вращения. Но и у таких подшипников во время пуска и остановки трущиеся поверхности не разделены масляным слоем достаточной толщины.  [c.404]

Трение. В реальных условиях обычно бывает смешанное трение — сочетание жидкостного и граничного или граничного и сухого. Внешним проявлением режима трения являются сила трения, утечки, износ. Рассмотрим результаты ряда работ по экспериментальному исследованию трения в торцовых уплотнениях. Момент трения является чувствительной функцией состояния смазочного слоя и поддается измерению. Для этого на испытательном стенде корпус уплотнения устанавливают на подшипники, а момент трения замеряют динамометром или осциллографируют тензодатчиком. Зависимость коэффициента трения / от скорости для уплотнения, показанного на рис. 70, б, дана на рис. 75, е. При низких контактных давлениях (р < 10 кПсм ) кривые для различных масел оказались близкими по форме и близко расположенными. Такие кривые f = F v, р, р,) с крутопадающей ветвью в области низких скоростей скольжения и слабовозрастающей ветвью в зоне больших скоростей скольжения характерны для многих исследованных уплотнений. Они аналогичны кривым для подшипников с жидкостной смазкой. На рис. 82, а результаты испытания уплотнения на минеральных маслах и на их основе представлены в функции безразмерного критерия режима s =  [c.160]

Для конкретности рассмотрим подшипник скольжения. Пусть нагрузка, геометрические размеры, диаметральный зазор подшипника, вязкость смазочного материала сохраняются постоянными. Будем изменять скорость вращения цапфы. При малой скорости скольжения поверхностей гидродинамический эффект их полного отделения не наблюдается, так как масло выдавливается из зазора. Трение только полужидкостное, С увеличением скорости скольжения гидродинамические силы возрастают и взаимодействие поверхностей снижается, наконец при некоторой скорости произойдет полное разделение поверхностей и наступит режим трения при жидкостной смазке. Дальнейшее увеличение скорости скольжения приведет к повышению внутреннего трения в слое смазочного материала, и коэффициент трения возрастет. Минимум коэффициента трения со-стветствует началу трения при жидкостной смазке.  [c.89]


Твердые смазочные материалы, способные легко расщепляться под механическим воздействием, образовывать тонкую смазывающую пленку на поверхности трения или сопряженной поверхности во время скольжения, разделяющую трущиеся поверхности и обладающую низким коэффициентом трения, позволили разработать подшипники сухого трения. Действие пленки жидкого смазочного материала сводится к разделению трущихся поверхностей слоем жидкости и ослаблению силы сцепления между ними. Этими свойствами обладают и некоторые твердые материалы в виде порошков, пленок и брусков (карандашей). Разница между твердыми и жидкими смазочными материалами главным образом количественная, но резкой границы здесь нег. Так, твердые смазочные материалы в виде пленок и покрытий имеют коэффициенты трения порядка 0,05—0,15, т. е. близкие коэффициентам трения л идкостной и граничной смазок. Как следует из ГОСТ 23,002—78 жидкостная и твердая смазки относятся к видам смазок, при которых разделение поверхностей трення деталей, находящихся в относительном движении, осуществляется соответственно жидким и твердым смазочными материалами. Однако по способам применения, отводу тепла и смазывающим свойствам жидкие смазочные материалы имеют преимущества перед твердыми и могут быть заменены твердыми только с ухудшением эксплуатационных характеристик. Это объясняется прежде всего меньшей долговечностью твердых смазывающих материалов из-за изнашивания. Их восстановление в процессе изнашивания либо невозможно, либо сопряжено с большими трудностями конструктивного и эксплуатационного свойства. Недостатком твердых смазывающих материалов является также затрудненный отвод тепла от смазываемых поверхностей, осуществляемый теплопроводностью. Поэтому нельзя говорить о том, что твердые смазочные материалы могут постепенно вытеснить жидкие и пластичные смазочные материалы. В основном при твердой смазке возможно расширение области использования узлов трения, например в вакууме, в коррозионных средах и т. п. Их применение в этих условиях обеспечивает существенную экономическую эффективность, а иногда является единственно возможным решением.  [c.36]

По виду трения различаются направляющие вращательного движения с трением скольжения, трением качения и с трением упругости (применение последних становится возможным, если относительное движение является качательным). В опорах с жидкостной или газовой смазкой поверхности цапфы и подшипника отделены друг от друга слоем смазки и в непосредственное сопри-косновение друг с другом не вступают. Опоры вращения в приборостроении отличаются большим разнообразием конструкций и применяемых материалов, что продиктовано различием требований к опора>1 и условиями их работы. Конструкции и расчету опор вращательного движения посвящены работы С. Т. Цуккермана [131 ], М. П. Ковалева [38], И. М. Сивоконенко и К. И. Явленского [38, ИЗ], Гильдебрандта [150] и др.  [c.503]


Смотреть главы в:

Механика машин Том 2  -> Жидкостное трение в подшипниках скольжения и их смазка



ПОИСК



Жидкостная смазка

Подшипник скольжения жидкостного трения

Подшипники Смазка

Подшипники Трение

Подшипники Трение в подшипниках

Подшипники жидкостного трения

Подшипники скольжения

Подшипники скольжения смазка

Подшипники скольжения. Трение и смазка подшипников

Смазка подшипников скольжени

Смазка скольжения

ТРЕНИЕ Трение скольжения

Трение в подшипниках скольжения

Трение жидкостное

Трение и смазка

Трение и смазка подшипников скольжения

Трение скольжения

Трение со смазкой, или жидкостное трение

Трение, смазка подшипников



© 2025 Mash-xxl.info Реклама на сайте