Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перемещения кривых брусьев-Вычисление

Вычисление перемещений в кривых брусьях  [c.327]

Вычисление перемещений. Для плоского кривого бруса большой кривизны перемещение точки его оси равно  [c.115]

Уравнения кривых прогибов круговых участков трубопроводов может быть составлено с использованием общих формул для вычисления перемещений брусьев, очерченных по дуге круга [35]. Однако при определении приведенной массы без существенного снижения точности расчета частоты можно принять для круговых участков кривую прогиба, имеющую форму, аналогичную прямолинейной консольной балке, но с удовлетворением граничных условий на свободном конце иногда  [c.190]


Изучая деформацию кривого бруса в плоскости его кривизны, Бресс учитывает не только изменение кривизны, что было сделано еще до него Навье (см. стр. 94), но также и удлинение оси бруса. Чтобы пояснить предложенный Брессом метод вычисления перемещений кривого бруса, допустим, что поперечное сечение а бруса защемлено (рис. 75), и обозначим продольную осевую растягивающую силу и изгибающий момент в некотором поперечном сечении бруса соответственно через N и М тогда удлинение бесконечно малого элемента тп длиной ds выразится частным N dsjAE, а поворот поперечного сечения п относительно сечения т через MdslEI. При таком повороте точка с оси бруса опишет бесконечно малую дугу сс,, равную n MdsjEI. Заметив, что бесконечно малый треугольник d подобен треугольнику сеп, находим, что горизонтальное перемещение d точки с,  [c.179]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]


Вычисление перемещений. Для плосрюго кривого бруса большой кривизны линейные н угяовые перемещения определяются по формуле Мора  [c.178]

При вычислении деформаций кривых брусьев мы пользовались до сих пор тео ремой Кастилиано, но эта задача может быть решена, как в случае прямых брусьев, путем введения фиктивных сил. Вычисления особенно упрощаются в случае тонких стержней, когдй можно пренебречь влиянием на деформации продольных и поперечных сил. Рассмотрим стержень АВ (рис. 323), заделанный на конце А и нагруженный в его плоскости симметрии ху. Для определения перемещения конца рассмотрим бесконечно малое перемещение ВС этого конца вследствие изгиба элемента тп стержня,. Пользуясь уравн<ением (214) для определения изменения угла между двумя смежными поперечными сечениями тип, находим  [c.323]


Смотреть страницы где упоминается термин Перемещения кривых брусьев-Вычисление : [c.370]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.3 , c.11 , c.115 ]



ПОИСК



Брус Перемещения

Брус кривой

Брусья Перемещения — Вычисление

Вычисление перемещений

Ось бруса

Перемещения в балках кривых брусьев—Вычисление



© 2025 Mash-xxl.info Реклама на сайте