Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее уравнение динамики формулы Гамильтона

Вариационная формула Гамильтона. Вернемся снова к материальной системе, подчиненной связям, указанным в п. 3, и возьмем опять общее уравнение динамики  [c.397]

Перейдем теперь к мемуару Второй очерк об общем методе в динамике . После вводных замечаний, описывающих общее содержание мемуара, Гамильтон обращается к установлению новой формы уравнений движения системы свободных материальных точек в произвольной криволинейной системе координат gi, дг. 9зп Отправляясь от принципа Даламбера, он устанавливает уравнения Лагранжа и, вводя в них вместо производных Qi, qtf-T qsn новые переменные pi, рг,---, Рзп о формулам  [c.12]


В случае произвольной системы материальных точек простота предыдущей теоремы нисколько не нарушается при условии, что дифференциальным уравнениям динамики дадут ту замечательную форму, в которой их впервые представил Гамильтон и которую отныне следует предпочесть во всех общих исследованиях, относящихя к аналитической механике. Правда, формулы Гамильтона относятся исключительно к случаям, когда составляющие сил являются частными производными одной и той же функции координат однако было нетрудно внести изменения, необходимые для того, чтобы сделать эти формулы применимыми в общем случае, когда силы выражаются любыми функциями координат.  [c.296]

Как будет показано в следующей главе, эти обобщения уравнений Гамильтона разделяют с последними то важное свойство, что для них автоматически выполняются все условия полной устойчивости, если только они удовлетворяют очевидным условиям устойчивости первого порядка. Следовательно, с этой точки зрения пфаффовы уравнения являются столь же важными для динамики, как и гамильтоновы, хотя первые принадлежат к более общему типу и, кроме того, имеют одно дополнительное преимущество, а именно они сохраняют свою пфаффову форму при любом преобразовании переменных, принадлежащем к формальной группе. В самом деле, достаточно только произвести замену переменных под знаком интеграла в формуле (12), чтобы получить преобразованные значения функций Xi и Z.  [c.100]


Смотреть страницы где упоминается термин Общее уравнение динамики формулы Гамильтона : [c.548]   
Курс теоретической механики Том 2 Часть 2 (1951) -- [ c.400 , c.401 ]



ПОИСК



70 - Уравнение динамики

Гамильтон

Гамильтона уравнения

Динамика гамильтонова

Динамика общее уравнение

Зэк гамильтоново

Общая динамика

Общие уравнения

Уравнение динамики общее

Уравнения формулы

Формула Гамильтона



© 2025 Mash-xxl.info Реклама на сайте