Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Геодезическая линия физического пространства

Тогда траектория частицы — геодезическая в физическом пространстве, т. е. частица движется с постоянной скоростью по прямейшей для данной геометрии линии. Такое движение совершенно аналогично движению частицы по фиксированной гладкой двумерной поверхности в инерциальной системе, где единственной силой, действующей на частицу, является нормальная реакция поверхности. Единственное существенное отличие состоит в том, что при нашем рассмотрении частица движется по трехмерной искривленной поверхности. Если пространственный метрический тензор зависит от времени, что обычно имеет место в случае гауссовой системы координат [см. 9.15], движение частицы в гравитационном поле аналогично движению частицы в инерциальной системе по изменяющейся гладкой поверхности. Таким образом, если динамические потенциалы равны нулю, то действие гравитационного поля имеет характер нормальной реакции искривленного трехмерного пространства.  [c.269]


Для устойчивой трещины ее путь таков, что работа, затраченная на формирование новой поверхности трещины наименьшая. Отсюда ясно, почему в рассмотренных частных случаях однородного напряженного состояния траектории трещины является кратчайшей линией на данной поверхности (геодезическая линия в физическом пространстве).  [c.20]

В виде частного приложения мы можем представить себе световые лучи в оптически изотропной, но неоднородной среде с коэффициентом преломления п(х,у,г), меняющимся от точки к точке. Как мы уже видели в п. 18, световые лучи тождественны с геодезическими линиями метрического многообразия, имеющего линейным элементом ds = nds, где ds есть обыкновенный линейный элемент физического (евклидова) пространства. Так как элемент ds отличается только позиционным множителем п от евклидова элемента ds, то обобщенные количества движения р траекторий будут также отличаться только на локальный множитель от направляющих косинусов соответствующей касательной, так что введенное выше условие ортогональности (58) приобретает в этом случае обычный смысл, который оно имеет в элементарной метрике. С другой стороны, как было отмечено в п. 18, п ds есть не что иное, как элемент времени dt, которое требуется свету, чтобы пройти элемент пути ds следовательно, действие сводится к времени распространения света. Таким образом, мы на основании теоремы Бедьтрами — Липшица заключаем, что световые лучи, которые в заданный момент выходят из заданной поверхности oq в направлении, ортогональном к Oq, или, в частности, из единственного центра, остаются всегда ортогональными к поверхности /= onst, каков бы ни был показатель преломления п, т. е. какова бы ни была неоднородность среды. Эти поверхности, представляющие собой геометрические места точек, к которым свет приходит за один и тот же промежуток времени, образуют так называемые волновые поверхности (см. гл. X, упражнение 13).  [c.451]


Смотреть страницы где упоминается термин Геодезическая линия физического пространства : [c.337]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.337 ]



ПОИСК



Геодезические

Линия геодезическая

Пространство физическое



© 2025 Mash-xxl.info Реклама на сайте