Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрица базисных функций расширенная

Как и в главе 8, базисные динамические переменные, удовлетворяющие локальным законам сохранения, будут обозначаться посредством а г). В гидродинамике неравновесное состояние системы описывалось средними значениями а г)) для которых выводились гидродинамические уравнения. В теории флуктуаций такого описания недостаточно, так как средние значения локальных переменных и моменты их флуктуаций удовлетворяют цепочке связанных уравнений. Таким образом, нужно расширить набор базисных переменных, включив в него произведения а г2), 2( 2) газ( з) и т.д. Недостатком этого подхода является то, что в нем приходится иметь дело со сложными формальными выражениями, содержащими бесконечные векторы и матрицы [98, 99]. Поэтому более удобно использовать уравнение для функции распределения (или функционала распределения) гидродинамических переменных, которое мы выведем в этом параграфе.  [c.217]


Основные преимущества МКЭ проистекают из его сеточного (разбивка на конечные элементы) и вариационного (использование вариационных принципов) характера. Вариационный подход расширяет класс допустимых функций и, в частности, позволяет конструировать решение при помощи не очень гладких, но, что важно, локализованных функций. Вариационный подход позволяет также исключить из специального рассмотрения естественные граничные условия. Наконец, сеточный характер МКЭ облегчает известные трудности, связанные с выбором базисных функций в вариационньк методах. В классических вариационных методах, изложенных в гл. 1.4, этот выбор сильно усложняется их зависимостью от конфигурации рассматриваемой области. В МКЭ такой зависимости нет. Влияние сеточных методов на МКЭ приводит к тому, что разрешающие системы алгебраических уравнений оказываются хорошо обусловленными, с редко заполненными матрицами, и, что очень важно, формирование таких матриц оказывается сравнительно простым.  [c.54]


Введение в метод конечных элементов (1981) -- [ c.13 ]



ПОИСК



C/C++ расширенный

Матрица базисных функций

Матрица расширенная

Функция базисная

Функция от матриц



© 2025 Mash-xxl.info Реклама на сайте