Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистика квантовая, классический -предел

Классический предел квантовой статистики  [c.220]

В заключение настоящей главы покажем, что исторически ранее построенная и изложенная в предыдущей главе классическая статистика представляет определенный предельный случай (классический предел) квантовой статистической теории.  [c.220]

Лишь немногие задачи физики привлекали в прошлом большее внимание, чем задачи, поставленные корпускулярно-волновым дуализмом света. История решения этих задач общеизвестна. Кульминационным моментом ее явилось построение квантовой теории электромагнитного поля. Однако по некоторым причинам, которые частично имеют математический характер, а частично связаны, по-видимому, со случайностями истории, в квантовой электродинамике рассматривалось очень мало вопросов, имеющих отношение к проблемам оптики. Так, например, статистические свойства пучка фотонов до сих пор описывались почти исключительно классическими или полуклассическими методами. При таком описании можно, конечно, получить некоторую информацию, но неизбежно остаются открытыми серьезные вопросы непротиворечивости теории, а также можно выпустить из поля зрения квантовые явления, которые не имеют классических аналогий. В качестве примера можно указать на корпускулярно-волновой дуализм света, который должен быть центральным вопросом любой теории, правильно описывающей статистику фотонов, и который исчезает при переходе к классическому пределу. Необходимость в более последовательной теории приводит нас к разработке квантовомеханического подхода к проблемам статистики фотонов. Некоторые результаты такого подхода изложены в статье [1]. Настоящая работа будет посвящена детальному анализу предпосылок, на основании которых получены результаты работы [1].  [c.66]


Ш квантовой статистике эти теоремы выполняются только в классическом пределе см. задачу З.9.]  [c.90]

Анализ данных о теплоемкости двухатомных газов в 19.2 показал, что классическая статистика приводит к неверным результатам, — следовательно, для решения этой задачи необходимо воспользоваться формулами квантовой статистики. Как обычно, расчет начинается с вычисления статистической суммы (7.6). Верхний предел для энергии положим равным оо.  [c.132]

Проследим, откуда появляется статистика Больцмана с точки зрения микроскопических представлений, какие пункты наших рассуждений существенны для появления классической или одной из квантовых статистик. Вернемся к формулам для статистической суммы и ее квазиклассического предела  [c.146]

К классическому пределу, можно обосновать метод классических ансамблей Гиббса. Следует также напомнить, что определение безразмерного элемента фазового пространства drдг, включающее множитель 1/М и минимальный размер фазовой ячейки (27r/i) , можно обосновать только в рамках квантовой статистики.  [c.28]

До сих пор наши рассуждения относились к квантовым системам. Отметим, однако, что в случае классической статистики нет необходимости заново выводить все формулы линейной реакции, так как переход к классическому пределу можно выполнить непосредственно в корреляционных функциях. Очевидно, что в пределе /i О статическая корреляционная функция (5.1.10) заменяется средним значению / А/ В)щ. Что касается корреляционных функций (5.1.19), зависящих от частоты, нужно также учесть, что в классическом пределе гайзенберговские операторы следует заменить фазовыми функциями A t) = exp(z L)4, где L — классический оператор Лиувилля.  [c.344]

Цель, которая должна быть поставлена перед квантовыми теориями, посвященными обоснованию статистики, по существу совпадает с той, которая ставилась в работах, исходивших из классических представлений. Эта цель заключается в том, чтобы дать интерпретацию не только некоторым частным проблемам — эргодичности илп ZT-теоремы, как обычно ставилась задача, но и всей совокупности принципов, лежащих в основании физической статистики. Эти принципы — эргодический характер временных средних, равномерная (относительно начальных состояний и относительно выбора той или иной величины заданной группы величин) сходимость к пределу временных средних, существование релаксации п /f-теорема — были охарактеризованы нами в 1 главы I. До сих пор обычно оставлялись в стороне утверждения о равномерной сходимости и о релаксации (в том смысле, что после некоторого времени — времени релаксации — вероятности состояний должны определяться флюктуационной формулой). Мы будем различать в дальнейшем две части проблемы необратимости проблему монотонного возрастания энтропии, которую будем называть ЛГ-теоремой, и проблему релаксации, имеющую только что определенный смысл. Совокупность указанных принципов лежит в основании как классической, так и квантовых статистик. В квантовых статистиках эти утверждения выражаются лишь на квантовом языке, так же как и понятия состояний системы, вероятностных распределешш, эргодических средних и т. д.  [c.135]



Смотреть страницы где упоминается термин Статистика квантовая, классический -предел : [c.635]    [c.14]   
Задачи по термодинамике и статистической физике (1974) -- [ c.3 , c.3 , c.3 , c.6 , c.9 , c.13 ]



ПОИСК



Газ классический

Квантовая статистика

Квантовый предел

Классический предел

Статистика

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте