Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свет - Закономерности отражения 69 — Преломление

Свет - Закономерности отражения 69 - Преломление 58, 59 - Пропускание 58 Светостойкость 351 Светофильтры 232 СВЧ-радиовидение 378 Сдвиг остаточный прн кручении 161 Секунда 129  [c.460]

ОППОНЕНТ. Мне кажется, что, наблюдая и изучая, например, отражение, преломление, двойное лучепреломление, можно вообще ничего не знать о строении света. Разве нельзя вывести систему определенных закономерностей непосредственно из наблюдаемых фактов  [c.8]

Итак, включение нелинейных материальных уравнений в систему уравнений Максвелла позволило решить ряд простых граничных задач. Выяснение закономерностей отражения и преломления света на ловерхностях нелинейного диэлектрика позволяет полностью проанализировать процессы генерации световых гармоник и смешения световых волн в ограниченной нелинейной среде. Такой анализ весьма важен для понимания особенностей поведения оптических приборов и систем при очень высоких уровнях плотности мощности света, достижимых в лучах лазеров.  [c.381]


В свете этого рассмотрим падение сферической волны от источника О на границу раздела сред (рис. 1.13). На большом расстоянии от источника каждый луч можно приближенно рассматривать как плоскую волну и применять к нему полученные выше закономерности отражения и преломления для плоской волны. Для лучей ОА и ОВ, угол падения которых меньше критического, происходит обычное отражение и преломление волн. Отраженные лучи как бы распространяются из мнимого источника О.  [c.38]

Еще с древних времен известны некоторые основные законы геометрической оптики — прямолинейное распространение света в однородной среде, распространение через границу двух прозрачных сред с отличающимися показателями преломления (закон преломления света) и отражение от плоской зеркальной поверхности (закон отражения света). А как быть, если распространение света происходит в среде с псирерывно меняющимся показателем преломления Существует ли какая-нибудь общая закономерность, описывающая распространение света во всех вышеперечисленных случаях Ответ на подобный вопрос был дан французским математиком Ферма в середине XVII в.  [c.167]

Впервые эти закономерности были установлены в начале XIX в. Aparo и Френелем. Принципиальное значение этих опытов состояло тогда в том, что они однозначно доказывали строгую поперечность световых волн и отсутствие продольной компоненты. Этот вывод, естественный с точки зрения электромагнитной теории, был сделан в свое время Юнгом и Френелем еще для упругой теории света и приводил к очень серьезным трудностям. Гипотеза о существовании среды, дающей строго поперечные колебания и не допускающей продольных, несовместима с представлением об обычной упругой среде, что заставило для понимания законов отражения и преломления света делать предположения, противоречащие механике обычных сред. В частности, Френель высказал гипотезу о том, что при переходе из одной среды в другую свойства эфира в этих средах изменяются таким образом, что его упругость остается неизменной и, следовательно, плотность меняется прямо пропорционально квадрату показателя преломления среды. Наличие данной гипотезы позволило Френелю решить задачу о соотношении между амплитудами падающей, отраженной и преломленной волн (формулы Френеля).  [c.49]

Взаимодействие излучения с прозрачными средами. Если исходить из основного предположения, что среда прозрачна, то, очевидно, надо под термином взаимодействие иметь в виду процесс распрострапения излучения в среде. Основные законы распространения света в прозрачных средах, справедливые в рамках линейной оптики, общеизвестны [1]. Это закон прямолинейного распространения света закон независимости световых пучков законы отражения и преломления на границе различных сред законы поглощения Бугера и Вера. В основе всех этих макроскопических ааконов лежит одна общая микроскопическая закономерность поляризация среды иод действием поля излучения описывается первым, линейным членом р = />< > = разложения индуцированной поляризации по степеням напряженности поля Е.  [c.15]


Богатая цветовая гамма растительного и животного мира волшебные краски неба, радуги, восхода и захода солнца, эффекты тени, смены дня и ночи, притягательная сила огня и раскаленного металла, кшогоцветие орнаментов национальных одежд, посуды, витражей... Можно долго перечислять примеры нашего повседневного соприкосновения с миром оптических явлений, которое начинается с раннего детства. Это и неудивительно, так как зрение человека основано на закономерностях взаимодействия света с веществом. Оптические свойства твердых тел являются предметом пристального научного и технологического интереса на протяжении последних трех-четьфех столетий, хотя эти свойства широко использовались для решения определенных декоративных задач еще со времен ранних цивилизаций уже древние художники, создатели наскальных изображений, находили эффектные цветовые решения путем смешивания различных природных пигментов. Начиная с открытия Снеллиусом в 1621 г. закона преломления света оптическая спектроскопия прошла полный драматизма и внутренних противоречий путь развития. За исследованиями явлений отражения и преломления света последовал этап повышенного внимания к интерференции, дифракции и поляризации света, а затем пришло время для целенаправленного изучения поглощения, флюоресценции (люминесценции), рассеяния света и нелинейных оптических эффектов. Длительное соперничество между корпускулярной и волновой теориями света увенчалось компромиссом, основанным на кохщепции дуализма, и открытием законов квантовой механики и квантовой электродинамики. Создание лазерных источников и совершенствование методов детектирования электромагнитного излучения превратили спектроскопию в мощный метод исследования физических свойств твердого тела и протекающих в нем элементарных процессов. Более того, вряд ли можно представить сегодня наши познания о микромире без средств, которые обеспечиваются спектроскопией видимого, инфракрасного.  [c.3]


Смотреть страницы где упоминается термин Свет - Закономерности отражения 69 — Преломление : [c.12]    [c.148]    [c.497]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.0 ]



ПОИСК



Отражение

Отражение света

Отражение. Преломление

Преломление

Преломление света



© 2025 Mash-xxl.info Реклама на сайте