Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СоФи простые

Помимо проблемы устойчивости движения, одной из классических задач теоретической механики является задача о движении твердого тела вокруг неподвижной точки, т. е. тела, закрепленного при помощи сферического шарнира. Этой задачей занимались самые выдающиеся ученые-механики Эйлер, Лагранж, Пуансо. Эйлер дал аналитическое решение этой задачи в простейшем случае, а именно в случае движения тела вокруг неподвижной точки по инерции. Пуансо для этого же случая движения твердого тела вокруг неподвижной точки дал наглядную геометрическую картину этого движения. Лагранж решил эту задачу в том случае, когда твердое тело имеет ось динамической симметрии, проходящую через неподвижную точку. Задача о движении твердого тела вокруг неподвижной точки имеет первостепенное значение для теории гироскопов, которая находит широкое применение в различных областях современной техники. После Эйлера и Лагранжа многие ученые безуспешно пытались найти новые случаи решения этой задачи. В 1888 г. Парижская академия наук объявила конкурс на лучшее теоретическое исследование движения твердого тела вокруг неподвижной точки. Премию в этом конкурсе получила первая русская женщина-математик Софья Васильевна Ковалевская (1850—1891). В своей работе Задача о движении твердого тела вокруг неподвижной точки она дала полное решение этой задачи в новом случае, значительно более сложном по сравнению со случаями Эйлера и Лагранжа. Эта работа доставила С. В. Ковалевской мировую известность и, по выражению Н. Е. Жуковского, немало способствовала прославлению русского имени .  [c.26]


Перейдем к рассмотрению уравнений (7.8) и (7.9) при % = = —] (т. е. для задач и Л ). Рассмотрим уравнение (7.8), которое имеет (в силу теоремы Гаусса (6.28)) очевидное решение фо=1, а, следовательно, Х = —1—собственное значение уравнения. Таким образом, приходим к утверждению, что уравнение (7.9) (как союзное) будет иметь при Х = —1 собственные функции. Покажем, что собственная функция — одна. Обозначая эту функцию через фо и рассматривая ее как плотность, образуем потенциал простого слоя Р(р, фо). Предельное значение его нормальной производной изнутри будет равно нулю, и поэтому сам потенциал будет равен некоторой постоянной Со- Если допустить, что уравнение (7.9) при X = —1 имеет еще одно решение фь линейно независимое с фо, то тогда потенциал Г(р, фО будет равен С. Образуем теперь плотность фа = С1фо — Софь которая также будет собственной функцией, причем потенциал Е(р, фа) будет равен нулю в области D+, а значит, и в области 0 . Поэтому его плотность фа есть тождественный нуль, а, следовательно, функции фо и ф1 линейно зависимы. Следовательно, уравнение (7.8) будет иметь лишь одну указанную ранее собственную функцию.  [c.101]


Смотреть страницы где упоминается термин СоФи простые : [c.265]    [c.247]    [c.239]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.359 ]



ПОИСК



Софиты



© 2025 Mash-xxl.info Реклама на сайте