Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Правила отбора Штарка

Еще в первых работах Штарка было обнаружено, что под влиянием енешнего электрического поля нарушаются правила отбора для вантового числа U Появляются запрещенные линии, для которых ДЛ = 0 и Д = 2, 3,. .. Так, в спектре гелия были обнаружены запрещенные серии одиночников  [c.385]

Штарковское расщепление линии водорода теоретически исследовано в ряде работ Шпитцера [ ]. Вопрос о расширении водородных линий в газоразрядной плазме при высокой температуре подробно разобран В. И. Каганом [ ]. Квадратичный эффект Штарка, ведущий к смещению линий, может объяснить сдвиг линий под влиянием давления. Однако, как мы увидим ниже, существуют и другие причины для сдвига линий. Наконец, отметим, что Нарушение правила отбора для квантового числа L в электрическом поле ( 69) объясняет появление некоторых запрещенных линий в электрических дугах  [c.496]


В этой главе вводятся и поясняются понятия группы приближенной симметрии и приближенного квантового числа. Важными группами приближенной симметрии являются молекулярная точечная группа и молекулярная группа вращений, которые дают нам весьма полезный приближенный способ классификации уровней по типам симметрии группа молекулярной симметрии (МС) и пространственная группа К(П) обеспечивают точную классификацию уровней. Далее рассматриваются взаимодействия уровней энергии молекулы, а группа точной симметрии используется для определения отличных от пуля членов возмущения и правил отбора для взаимодействия уровней. Приближенные квантовые числа и приближенную классификацию уровней по симметрии можно использовать также для выявления сильных возмущений уровней. Затем мы выведем правила отбора для однофотонных электрических дипольных переходов с использованием классификации уровней по квантовым числам и по приближенным и точным типам симметрии. Далее мы обсудим запрещенные переходы, а в конце этой главы кратко рассмотрим магнитные дипольные переходы, электрические квадрупольные переходы, многофотоиные процессы (включая комбинационное рассеяние света) и эффекты Зеемана и Штарка.  [c.294]

Этот оператор имеет симметрию оператора электрического ди-полыюго момента и, следовательно, относится к типу симметрии Г группы МС и группы К(П). Следовательно, эффект Штарка смешивает состояния типов симметрии, произведение которых содержит Г и D ) правила отбора, согласно которым смешиваются состояния при наложении электрического поля, совпадают с правилами отбора для электрических ди-польных переходов, так как в обоих случаях они определяются из матричных элементов Mi. Эффект Штарка смешивает такие состояния, между которыми разрешены электрические дипольные переходы. Отметим, что оператор / ш инвариантен относительно обращения времени, так как он не изменяется при обращении моментов и спинов.  [c.361]

Постоянная времени, характеризующая нерезонансный эффект Штарка, и действующее поле лазерного излучения. Часто можно встретить утверждение, что нерезонансный эффект Штарка является бези-нерционным. На самом деле это утверждение не является строгим. Дело в том, что постоянная времени нерезонансного эффекта Штарка определяется соотношением неопределенности энергия-время АЕ Аг Н. При этом величина АЕ представляет собой расстройку резонанса (дефект энергии) для перехода электрона, поглотившего один фотон внешнего поля в ближайшее реальное связанное состояние с учетом дипольных правил отбора, т.е. АЕ =  [c.88]


Расщепление Штарка. Если у молекулы типа симметричного волчка имеется постоянный электрический дипольный момент, то, как было показано в гл. I, разд. 4, расщепление энергетических уровней в электрическом поле в первом приближении должно быть точно таким же, как и в магнитном поле. Поскольку правила отбора одинаковы, штарковские компоненты лишш в электрическом иоле такие же, как компоненты в магнитном поле. Расщепление линий в Р-, Q- ж Л-ветвях должно происходить соответственно на 3(2/ + 1), 3(2/) и 3(2/ — 1) компонент. Полное расщепление, за исключением линий с самыми низкими значениями /, дается выражением  [c.274]


Смотреть страницы где упоминается термин Правила отбора Штарка : [c.267]    [c.363]    [c.751]   
Оптические спектры атомов (1963) -- [ c.378 ]



ПОИСК



Отбор

Правила отбора

Правила отбора.— Зеемановские компоненты.— Спектры магнитного вращения.— Расщепление Штарка ПРИНЦИПЫ ПОСТРОЕНИЯ ЭЛЕКТРОННЫХ ОКОЛОЧЕН. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ UСТАБИЛЬНОСТЬ ЭЛЕКТРОННЫХ СОСТОЯНИЙ МОЛЕКУЛ Корреляция электронных состояний

Штарка



© 2025 Mash-xxl.info Реклама на сайте