Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ангармонические колебания 219 (глава

Анализ инфракрасных полос асимметричных полчков 73, 514 линейных молекул 417 симметричных волчков 462 сферических волчков 482 Анализ колебательных частот, проверка по изотопическому соотношению 247 Ангармонические колебания 219 (глава 11, 5), 261  [c.597]

В обоих последних параграфах этой главы мы перейдем к предельному случаю длинноволновых колебаний решетки. Когда длина волны велика по сравнению с атомными расстояниями, то микроскопическая структура твердого тела не играет роли. Здесь осуществляется переход к классической континуальной теории. В приближении, которым мы будем пользоваться, потенциальная энергия ионов решетки разлагается по степеням мгновенного отклонения и используется только первый, неисчезающий (гармонический) член. Это —гармоническое приближение. В этом приближении оператор Г амильтона может быть разложен в сумму независимых частей, которые имеют форму операторов Гамильтона гармонических осцилляторов. Это разложение лежит в основе квантования и дает возможность описывать колебания решетки как газ невзаимодействующих фононов. Учет более высоких ангармонических членов в разложении означает учет взаимодействия между фононами и является предметом последней главы (гл. XI). Область, связанная с рассмотрением колебаний решетки в гармоническом приближении, излагается во многих работах. Большое число нижеприведенных литературных ссылок выходит за рамки приводимого в этой главе материала поправки на ангармонические члены, взаимодействие фононов с другими элементарными возбуждениями и с локальными нарушениями решетки. Специальную литературу к этим вопросам мы приведем в последующих главах.  [c.130]


Итак, первым приближением при рассмотрении колебаний атомов в кристалле является гармоническое Ьриближение. В этом приближении полагается, что средние равновесные расстояния между соседними атомами отвечают минимуму кривой U R), причем они соответствуют статической модели кристалла. Атомы колеблются относительно средних положений своих центров тяжести, причем амплитуды колебаний достаточно малы, что позволяет ограничиться учетом квадратичных смещений атомов. Сразу же отметим, что хотя гармоническая модель согласуется со многими экспериментальными данными, некоторые свойства кристаллов, например тепловое расширение, могут быть объяснены лишь при учете эффекта кубичного члена. Такое приближение называют ангармоническим. Оно будет рассмотрено несколько подробнее в конце данной главы.  [c.209]

В настоящей главе мы изложим приближенные теории теплоемкости Эйнщтейна и Дебая, основанные на рассмотрении колебаний кристаллической решетки, причем будут затронуты также и методы более точных расчетов. Затем мы рассмотрим эффекты, связанные с ангармоническими взаимодействиями в решетке (включая тепловое расширение), формулу Грюнайзена и теплопроводность диэлектриков. Тепловые свойства металлов рассматриваются в гл. 7, сверхпроводников — в гл. 12, особенности. тепловых свойств магнитных материалов — в главах 15 и 16.  [c.211]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.5 , c.11 , c.261 ]



ПОИСК



Ангармонические колебания

Колебания 75 (глава II)



© 2025 Mash-xxl.info Реклама на сайте