Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сдвиг при кручении тонкостенных профилей

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]


Пример такой деформации дает решение задачи Сен-Венана о свободном кручении тонкостенного стержня с открытым профилем. Как известно, в этом случае деформация стержня происходит без сдвигов и удлинений срединной поверхности.  [c.175]

Кручение замкнутых тонкостенных профилей рассматривается на основе теоремы о циркуляции сдвига [ ].  [c.129]

КРУЧЕНИЕ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ЗАМКНУТОГО ПРОФИЛЯ Таким образом, полная величина сдвига  [c.195]

Уточненная теория крутильных колебаний тонкостенных стержней открытого профиля. Если при кручении тонкостенного стержня открытого профиля учитывать наряду с чистым кручением и депланационными эффектами также напряжения сдвига срединной поверхности, то потенциальная энергия деформации  [c.151]

Кручение замкнутых тонкостенных профилей рассматривается на <зснове теоремы о циркуляции сдвига [ ]. Рассмотрим интеграл  [c.130]

Поставленная Сен-Венаном задача о кручении и изгибе консоли продолжала оставаться темой научной разработки также и в XX веке, причем были найдены строгие решения для некоторых новых видов поперечных сечений ). Для случая изгиба были исследованы несимметричные сечения, причем была установлена точка, в которой приложение изгибающей нагрузки не сопровождается кручением ). Было показано, что в полукруглом и равнобедренно-треугольном сечениях достаточно лишь небольшого смещения нагрузки из центра тяжести, для того чтобы избежать кручения. В тонкостенных профилях такое смещение может оказаться существенным и иметь большое практическое значение. Ясность в зтот вопрос была внесена Р. Мэйаром ) он ввел понятие центра сдвига и показал, как находить эту точку.  [c.480]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]


Стесненное кручение стержня с произвольной формой открытого профиля было рассмотрено Вагнером в 1929 г. [З ]. Вагнер исходил из тех гипотез, которые были приняты при выводе уравнения (6) для двутавра ими являлись гипотеза неизменяемости контура поперечного сечения и гипотеза отсутствия сдвигов срединной поверхности. При развитии теории устойчивости тонкостенного стержня Вагнер получил H B pitbi результаты, ошибочно предположив совпадение центра вращения при потере устойчивости с центром изгиба. Эта ошибка была обнаружена В. 3, Власовым.  [c.203]

В том же 1955 г. было защищено три дессертации Н. Д. Рей-ком на тему О несущей способности и деформахХиях тонкостенных стальных балок при изгибе с кручением , А. А. Деркачевым на тему Некоторые вопросы теории тонкостенных стержней открытого профиля и П. Д. Мищенко на тему Расчет тонкостенных стержней открытого профиля с учетом сдвига срединной поверхности .  [c.14]


Смотреть страницы где упоминается термин Сдвиг при кручении тонкостенных профилей : [c.533]    [c.325]    [c.26]    [c.319]    [c.179]   
Сопротивление материалов Издание 13 (1962) -- [ c.533 ]



ПОИСК



Кручение тонкостенных

Профили Кручение

Профиль тонкостенный

Сдвиг и кручение



© 2025 Mash-xxl.info Реклама на сайте