Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип транзитивности

Понятие температуры можно ввести на основе следующего экспериментального факта. Соединим два теплоизолированных тела / и 2 с помощью диатермической стенки с телом 3. После установления равновесия отделим тело 3 от тел 1 и 2, которые соединим между собой диатермической стенкой. Говорят, что тела 1 п 2 находятся в тепловом равновесии, если значения параметров при соприкосновении тел 1 и 2 остаются постоянными. Этот результат формулируется в виде принципа транзитивности (называемого также нулевым законом термодинамики), который гласит, что если два тела находятся в тепловом равновесии с третьим телом, то они находятся в равновесии между собой. Из принципа транзитивности вытекает, что для каждого тела существует взаимно однозначная функция независимых параметров состояния, называемая эмпирической температурой. Равные значения этой функции характеризуют тела, находящиеся во взаимном тепловом равновесии.  [c.68]


В соответствии с принципом транзитивности (рис. 4) как следствие существования этих соотношений должна существовать также и связь  [c.23]

В современных сетях САПР применяют оперативный способ коммутации абонентских пунктов, при котором обеспечивается соединение входящих и исходящих каналов только на время передачи сообщения. После передачи сообщения соединение нарушается. При оперативной коммутации используют способ образования транзитивных трактов, построенный на сквозном принципе, при котором до начала сеанса передачи сообщения абонент устанавливает сквозное соединение каналов. Только после этого он приступает к передаче сообщений. При занятости требуемого абонентского пункта или канала связи информацию записывают на запоминающее устройство (ЗУ) ближайшего центра коммутации (ЦК) и хранят там до освобождения канала ПД.  [c.86]

Риманово многообразие V, определяемое формулой (19) по пространству конфигураций твердого тела 2 в бесконечной идеальной жидкости, замечательно тем, что оно обладает простой транзитивной группой изометрий (движений твердого тела), оставляющих инвариантным ds. По современной математической терминологии оно является однородным пространством. Это объясняется следующим очевидным теоретико-групповым принципом относительности относительно рассматриваемого тела все положения эквивалентны. Формально это можно выразить следующим образом.  [c.219]

Связь между понятиями топологической энтропии и энтропии относительно инвариантной меры более полна и точна, чем для таких пар понятий, как рекуррентность орбит — типичное относительно инвариантной меры возвращение, топологическая транзитивность — эргодичность, минимальность — строгая эргодичность, топологическое перемешивание — перемешивание. Для этих случаев данная связь односторонняя статистическое свойство влечет топологический аналог, но, вообще говоря, не наоборот. В случае энтропий связь между ними описывается вариационным принципом (теорема 4.5.3), который утверждает, что топологическая энтропия непрерывного отображения равна точной верхней грани энтропий этого отображения по всем инвариантным мерам. Таким образом, не только статистическое свойство (скажем, положительность энтропии относительно инвариантной меры) влечет топологический аналог (в этом случае положительность топологической энтропии), но и наоборот, из положительности топологической энтропии следует существование инвариантной меры с положительной энтропией (это свойство представляет собой количественное усиление теоремы Крылова — Боголюбова 4.1.1 для случая отображений с положительной топологической энтропией).  [c.170]


Помимо сказанного выше из принципа термодинамической транзитивности следует, что для любой равновесной термодинамической системы существует связь Параметров а, с температурой О, в частности для каждой из рассмотренных систем па газа мы получили I  [c.24]

Однако такого выражения для (15 мы не имеем структура последних двух слагаемых не складывается в конструкцию, пропорциональную дифференциалу удельного объема у. Ввиду того что произведение Ы5 является величиной аддитивной, остается единственная возможность О — неаддитивная величина, т. е. 0 = = 0 (0, и). В 1 мы связывали понятие температуры с транзитивными свойствами состояния термодинамического равновесия. Чтобы показать, что величина (0, V) не зависит от V, достаточно в данном случае использовать искусственное построение, связанное с делением системы всего лишь на две равновесные части. Итак, пусть исходная равновесная система состоит из двух подсистем (рис. 26) типа газа (мы уже положили а=0), разделенных теплопроводящей стенкой. Ее термодинамическое состояние определяется набором параметров 0, Уь 2, Л ь Л г- В соответствии с принципом аддитивности состояния термодинамического равновесия  [c.72]

В массиве ПК организуются связи и отношения через ранжирование в виде разного рода иерархии отношения порядка в соответствии с функциональной структурой и блочно-модульным принципом построения изделия. Па разных ступенях иерархии ПК, начиная с технических требований и кончая требованиями к точности детали, существуют разные меры количественной оценки ПК и их величины, допускаемые отклонения устанавливаются в разных шкалах измерений. Иерархическая схема ПК уточняется отношением порядка со свойствами рефлексивности, транзитивности и антисимметричности. Выявляется массив альтернатив из функциональных параметров, определяющий ресурс повышения ПК.  [c.22]

В связи с выщесказанным становится понятным характерное свойство термодинамической системы параметры, характеризующие ее равновесное состояние, подчинены принципу термодинамической аддитивности по отношению к количеству содержащегося в ней вещества (или количеству частиц в ней М) или к ее объему V. Эти параметры в соответствии со свойствами транзитивности состояния термодинамического равновесия не зависят от того, с какими другими термодинамическими системами находится в контакте рассматриваемая система, в частности, какие стенки (являющиеся также термодинамическими системами) ее ограничивают и какова форма сосуда , в которой находится система (т.е. фиксация конкретных фаничных условий, так необходимая в других обстоятельствах, оказывается в данном случае совершенно несущественной). Таким образом, в качестве основного аддитивного параметра, характеризующего размер системы или ее вес, можно выбрать ее объем или число частиц в ней, характеризуя остальные параметры, пропорциональные количеству вещества в системе, удельными величинами в расчете на фамм вещества, в среднем на одну частицу или в расчете на I см .  [c.9]


Смотреть страницы где упоминается термин Принцип транзитивности : [c.77]    [c.93]    [c.66]   
Теория упругости (1975) -- [ c.68 ]



ПОИСК



Транзитивность



© 2025 Mash-xxl.info Реклама на сайте